Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Humanoids can take Advantage of Crab-Walking Gaits

    Recent advances in control of humanoid robots have resulted in bipedal gaits that are dynamically stable on moderately rough terrain but are still limited to a small range of slopes. Humanoid robots, like humans, can take advantage of quadruped gaits to greatly extend this range. Cleverly designed gaits can provide robustness to rough terrain without requiring extensive feedback. In this paper, we present a robust crab-walking framework that includes forward and backward crawling patterns, rotation patterns, and sit-down and recovery sequences. The latter are activated autonomously once the robot detects that it tipped over. The performance and robustness of each locomotion pattern are investigated over a wide range of slopes. Crab-walking is shown to be especially adept at crawling forward on steep downward slopes (up to -54°) and crawling backward on steep upward slopes (up to 18°). Finally, we demonstrate the framework's autonomous capabilities by crossing the rough terrain in DARPA's virtual robotics challenge.

  • articleNo Access

    Rhythmic Trajectory Design and Control for Rehabilitative Walking in Patients with Lower Limb Disorder

    Wearable robotic systems have been a mechanism which clearly drives the motive of bringing back paraplegics back on their feet as well as executing difficult task beyond human ability. The purpose of this research study is to design and investigate the efficacy of rehabilitative walking in patients with lower limb disorders using oscillators which may commonly be referred to as central pattern generators (CPGs). In order to achieve this, a rhythmic trajectory is designed using Van der Pol oscillators. This rhythmic trajectory commensurates with the movement pattern of the hips and knees for a normal walking gait of humans. The dynamical model of a five-link biped exoskeletal device having four actuated joints is computed with regard to the wearer using Lagrangian principles in the sagittal plane. A feedback linearization control technique is therefore utilized for tracking the rhythmic trajectory to achieve a proper following of the human walking gait. Matlab/Simulink is used to validate this proposed strategy in the presence of uncertainties with a view to implementing it practically in the laboratory with human in the loop. Results show that humans with the aid of the exoskeleton device will possess the ability to track this rhythmic trajectory representing the hip and knee joint movements. The controller proved robust enough against disturbance.