Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

Bestsellers

Handbook of Machine Learning
Handbook of Machine Learning

Volume 1: Foundation of Artificial Intelligence
by Tshilidzi Marwala
Handbook on Computational Intelligence
Handbook on Computational Intelligence

In 2 Volumes
edited by Plamen Parvanov Angelov

 

  • articleNo Access

    Low-Voltage Circuit Breakers Based on WBG Solid-State Devices

    Conventional circuit breakers suffer from two main deficiencies: they are slow to operate and develop an electrical arc. These may be overcome by using solid-state switches which in turn introduce other problems, most significantly power dissipated while in the on-state. Nevertheless, a number of solid-state devices are candidates for implementation as low-voltage circuit breakers and there are several options based on the semiconductor material that may function as high-power switches. This paper presents a unique, extensive and systematic evaluation of these options. Voltage-controlled devices are selected due to the simplicity of the controlling circuit and their resilience to dv/dt-induced switching. Properties of fully solid-state circuit breakers are established and systematic comparisons are made among switches built of silicon and other wide bandgap (WBG) devices such as SiC MOS and GaN HEMT transistors. Using SPICE simulation it is shown that solid-state circuit breakers (SSCBs) based on WBG devices exhibit superior characteristics compared with silicon devices, with faster switching and higher voltage and current ratings. Hybrid circuit breakers, combining both conventional and solid-state switches, are discussed too and a new design circuit is simulated and compared to both conventional and fully solid-state designs.

  • chapterNo Access

    Numerical Simulation of Selecting Model Scale of Cable in Wind Tunnel Test

    The numerical simulation method based on computational Fluid Dynamics (CFD) provides a possible alternative means of physical wind tunnel test. Firstly, the correctness of the numerical simulation method is validated by one certain example. In order to select the minimum length of the cable as to a certain diameter in the numerical wind tunnel tests, the numerical wind tunnel tests based on CFD are carried out on the cables with several different length-diameter ratios (L/D). The results show that, when the L/D reaches to 18, the drag coefficient is stable essentially.

  • chapterNo Access

    Research on Cable Assembly Technology Facing Tridimention Layout in Spacecraft

    According to the requirement for cables tridimensional layout in spacecraft, the research on new transmission line support (NTLS) is carried out. NTLS is namely T support. Based on the analysis of NTLS's physical parameters, the scheme of cable installing is established. Experimentations of statics and vibration prove the feasibility and dependability of the scheme. The results of experimentation indicate that the scheme of cable installing on T support is reasonable along with the requirement of cables tridimensional layout is satisfied. Therefore the efficiency of spacecraft assembly and integration is greatly enhanced.