Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Some people think that carbon and sustainable development are not compatible. This textbook shows that carbon dioxide (CO2) from the air and bio-carbon from biomass are our best allies in the energy transition, towards greater sustainability. We pose the problem of the decarbonation (or decarbonization) of our economy by looking at ways to reduce our dependence on fossil carbon (coal, petroleum, natural gas, bitumen, carbonaceous shales, lignite, peat). The urgent goal is to curb the exponential increase in the concentration of carbon dioxide in the atmosphere and hydrosphere (Figures 1.1 and 1.2) that is directly related to our consumption of fossil carbon for our energy and materials The goal of the Paris agreement (United Nations COP 21, Dec. 12, 2015) of limiting the temperature increase to 1.5 degrees (compared to the pre-industrial era, before 1800) is becoming increasingly unattainable (Intergovermental Panel on Climate Change (IPCC), report of Aug. 6, 2021). On Aug. 9, 2021 Boris Johnson, prime minister of the United Kingdom, declared that coal needs to be consigned to history to limit global warming. CO2 has an important social cost…
The stability of an organic compound depends on its nature and the environment in which it is placed. It depends on the presence or absence of reagents (acid, base, oxidizing agent, reducing agent, light, etc.) and catalysts. The stability may not be the same in the solid, liquid or gaseous state. In a homogenous solution, the stability might be affected by the polarity of the solvent and its concentration. For instance a polar solvent favors ionization. In a non-polar solvent ionization is difficult. In the gas phase ionization never occurs. In the gas phase and in solution stability depends on pressure and the presence of impurities. We are interested here in the thermal stability of pure compounds in the gas phase or in non-polar solvents under one atmosphere…
Today, fossil carbon provides us with fuels (energy), polymers (packaging, insulating and building materials, household utensils, glues, coatings, textiles, 3D-printing inks, furnitures, vehicle parts, toys, electronic and medical devices, etc.) and biologically active substances (drugs (Chapter 9), flavorings, fragrances, food additives, plant protection products, etc.). In this chapter we discover the modern materials of our civilization which are very often polymers derived from oil. They are referred to as “plastics” (annual world production: 380 × 106 tons). Their production consumes 8% of the crude oil extracted (ca. 5 billion tons per year). An increasing part of the plastics originates from renewable resources (less than 10% today, see Section 11.10, bio-sourced plastics). Plastics make life easy for us, but at the underestimated cost of damage to our environment (Figure 8.1) and our health. They contaminate the hydrosphere and the agricultural soil. The atmosphere is also contaminated by microplastics…
Syngas is a mixture of carbon monoxide (CO) and molecular hydrogen (H2) that can be converted into a host of industrial feedstocks including fuels such as gasoline, fuel oil and kerosene. We examine what are the most abundant sources of these two gases and describe some important transformations that continue to fascinate scientists because, with a reactant as simple as CO, which contains only one carbon atom, catalysts allow to condense it with H2 and to form C–C bonds even though all oligomers of the (CO)n type (n = 2, 3, …) are kinetically and thermodynamically unstable. Let us recall here that thanks to photosynthesis, Nature builds C–C bonds (e.g. D-glucose) from CO2 and H2O and solar light! (Section 1.4.2, reaction (1.8), Figure 1.10)…