Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    EFFECT OF STAND-OFF DISTANCE ON ABRASIVE WATER JET PIERCING OF CERAMIC-COATED SUPERALLOY

    The drilling of film cooling holes on gas turbine blades made out of ceramic-coated superalloy improves the efficiency of the gas turbine and prolongs the life of the turbine blade. The purpose of this study was to investigate the effects of different stand-off distances (SODs) on abrasive water jet (AWJ)-pierced holes, in which the machining time, entry and exit hole diameters, overcut, hole taper, and surface morphology were studied. In this study, the water jet pressure (WJP) of 275MPa, piercing angle of 90, dwell time of 0.2s, and abrasive flow rates (AFRs) of 350g/min and 400g/min were considered for the AWJ piercing operations. The entry and exit hole diameters and overcut linearly increased with an increase of SOD with different abrasive flow rates. And hole taper was observed at the coating and substrate sections in which it decreased with an increase of SOD up to 2mm, and a further increase of SOD increased the hole taper. Besides, the drilled holes were found to have an absence of delamination, cracks, and thermal defects. It was also noted that there is a transformation from a brittle to a ductile mode of erosion that may occur in the high-erosion kinetic energy impact region in the YSZ material section. Based on the experimental results, it is confirmed that SOD of 2mm became an influencing factor in AWJ for piercing quality holes in the YSZ-coated superalloy.

  • articleNo Access

    Inhomogeneous crystallinity and its influence on piezoelectricity of Bi12TiO20-BaTiO3 polar composites fabricated by thermal gradient sintering

    We have previously described the enhancement of piezoelectricity in low crystallinity Bi12TiO20–BaTiO3 (BTO-BT) nanocomposites. This poses a question regarding the effect of the crystallinity on piezoelectricity. Here, the variation of crystallinity and structure that was developed along the temperature gradient was confirmed. The magnitude of the piezoelectric constant was found to have great relationship with the crystallinity and distortion of BiO5 polyhedra of amorphous Bi12TiO20. The highest piezoelectric constant of 13pC/N was obtained together with the lowest crystallinity and highest degree of distortion of BiO5 polyhedra. These results highlight the key role of the amorphous phase and further confirm the importance of distortion of BiO5 polyhedra in influencing the piezoelectricity. In this view, one may also expect that macroscopic polarity could be improved by increasing the amorphous content and the degree distortion of the BiO5 bonding units in the system.

  • articleNo Access

    Investigation of Sr1-xCaxTiO3 ceramics dedicated to high-frequency lead-free components

    Lead–free Sr1xCaxTiO3 (x=0,0.4) ceramics were synthesized via a solid state reaction technique at room temperature. The effects of ionic substitutions in A-sites between strontium and calcium on the structural and dielectric properties were investigated. XRD technique was used to identify the crystal structure and to demonstrate the phase purity. SEM observations have shown homogeneous morphologies for all samples. Dielectric measurements were investigated for a wide range of frequency (100Hz–1GHz) and temperature (25C–250C). Strontium substitution by calcium has not only led to a decrease in the dielectric permittivity value, but also to the loss tangent value by a considerable factor. Interesting values of the quality factor and the quite constant value ε200 in extended frequency and temperature ranges show that SCT ceramic could be a real candidate for the development of monolithic ceramic capacitors dedicated to high-frequency lead-free components and/or to extremely high-temperature environments.

  • articleFree Access

    DIELECTRIC PROPERTIES OF ULTRAFINE Zn-DOPED CaCu3Ti4O12 CERAMIC

    Ultrafine powder of CaCu2.80Zn0.20Ti4O12 ceramic was prepared using a novel semi-wet method. DTA/TG analysis of dry powder gives pre-information about formation of final product around 800°C. The formation of single phase was confirmed by X-ray diffraction analysis. The average particle size of sintered powder of the ceramic obtained from XRD and Transmission electron microscopy was found 59 nm and 102 nm, respectively. Energy Dispersive X-ray studies confirm the stoichiometry of the synthesized ceramic. Dielectric constant of the ceramic was found to be 2617 at room temperature at 1 kHz.

  • articleFree Access

    Effect of TeO2 addition on the dielectric properties of CaCu3Ti4O12 ceramics derived from the oxalate precursor route

    CaCu3Ti4O12 (CCTO) ceramics which has perovskite structure gained considerable attention due to its giant permittivity. But it has high tan δ (0.1 at 1 kHz) at room temperature, which needs to be minimized to the level of practical applications. Hence, TeO2 which is a good glass former has been deliberately added to CCTO nanoceramic (derived from the oxalate precursor route) to explore the possibility of reducing the dielectric loss while maintaining the high permittivity. The structural, morphological and dielectric properties of the pure CCTO and TeO2 added ceramics were studied using X-ray diffraction, Scanning Electron Microscope along with Energy Dispersive X-ray Analysis (EDX), spectroscopy and Impedance analyzer. For the 2.0 wt.% TeO2 added ceramics, there is a remarkable difference in the microstructural features as compared to that of pure CCTO ceramics. This sample exhibited permittivity values as high as 7387 at 10 KHz and low dielectric loss value of 0.037 at 10 kHz, which can be exploited for the high frequency capacitors application.

  • articleOpen Access

    Impedance spectroscopic and dielectric properties of nanosized Y2/3Cu3Ti4O12 ceramic

    Yttrium Copper Titanate (Y2/3Cu3Ti4O12) nanoceramic is structurally analogous to CaCu3Ti4O12 (CCTO). X-ray diffraction (XRD) of Y2/3Cu3Ti4O12 (YCTO) shows the presence of all normal peaks of CCTO. SEM micrograph exhibits the presence of bimodal grains of size ranging from 1–2 μm. Bright field TEM image clearly displays nanocrystalline particle which is supported by presence of a few clear rings in the corresponding selected area electron diffraction (SAED) pattern. It exhibits a high value of dielectric constant (ε′ = 8434) at room temperature and 100 Hz frequency with characteristic relaxation peaks. Impedance and modulus studies revealed the presence of temperature-dependent Maxwell–Wagner type of relaxation in the ceramic.

  • articleOpen Access

    Complex dielectric modulus and relaxation response at low microwave frequency region of dielectric ceramic Ba6-3xNd8+2xTi18O54

    The desirable characteristics of Ba6-3xNd8+2xTi18O54 include high dielectric constant, low loss tangent, and high quality factor developed a new field for electronic applications. The microwave dielectric properties of Ba6-3xNd8+2xTi18O54, with x = 0.15 ceramics at different sintering temperatures (600–1300°C) were investigated. The phenomenon of polarization produced by the applied electric field was studied. The dielectric properties with respect to frequency from 1 MHz to 1.5 GHz were measured using Impedance Analyzer, and the results were compared and analyzed. The highest dielectric permittivity and lowest loss factor were defined among the samples. The complex dielectric modulus was evaluated from the measured parameters of dielectric measurement in the same frequency range, and used to differentiate the contribution of grain and grain boundary.

  • articleOpen Access

    Structural and optical properties of a revived Pb0.5Ba1.5BiVO6 perovskite oxide

    The polycrystalline ceramic Pb0.5Ba1.5BiVO6 manifesting the complex double perovskite structure was tailored by the conventional solid state route at a moderate temperature. Qualitative phase analysis and formation of the ceramic were affirmed by XRD analysis. The X-ray powder diffraction pattern of the compound explored at room temperature affirms the single phase formation with double perovskite structure exhibiting rhombohedral phase. Microstructural analysis of the studied compound procured from the Scanning Electron Microscope (SEM) validates the formation of dense microstructures and nonuniformly distributed grains with minimal voids. Compositional analysis was shaped through the Electron Diffraction Spectroscopy (EDS) confirming the absence of contamination of any other metals apart from the mentioned ones. Dielectric (Cr and tanδ) parameters of the compound were studied using the LCR analyzer at different temperatures and wide range of frequencies. The polarization and dielectric study affirms the presence of ferroelectricity in the material with transition temperature much above the room temperature. The tangent dielectric loss of this sample being almost minimal at room temperature attributes it to find applications in different grounds of electronics. Optical equities of the ceramic were further analyzed by the RAMAN, FTIR, UV–Vis and Photoluminescence spectroscopy.

  • articleOpen Access

    Microwave absorption properties of bismuth ferrite-based ceramics

    The paper presents the results of a study of the microwave absorption properties of ceramic materials based on bismuth ferrite containing rare earth elements, as well as systems of solid solutions (1x)BiFeO3xPbFe1/2Nb1/2O3 in a wide range of component concentrations. The methodology for measuring and calculating the parameters of samples of the materials under study is described. The influence of structural and microstructural factors on the average and maximum level of microwave absorption of the materials under study in a wide frequency range is analyzed. A comparison of the microwave absorbing properties of these materials with industrial absorbers has been carried out, and prospects for application in microwave technology have been shown.