Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The Hagedorn temperature, TH is determined from the number of hadronic resonances including all mesons and baryons. This leads to a stable result TH = 174 MeV consistent with the critical and the chemical freeze-out temperatures at zero chemical potential. We use this result to calculate the speed of sound and other thermodynamic quantities in the resonance hadron gas model for a wide range of baryon chemical potentials following the chemical freeze-out curve. We compare some of our results to those obtained previously in other papers.
INDIA – Bioven starts BV-NSCLC-001 Phase III trial in NSCLC.
INDIA – Initiative in Chemical Biology and Therapeutics.
PHILLIPPINES – Asia–Pacific Analysis: The slow road to green energy.
SINGAPORE – Takeda progressing well in Asia with New Drug Applications.
SINGAPORE – NTU and University of Warwick boost brainpower in global neuroscience research.
THAILAND – Thai PhD. student awarded Monsanto's Beachell–Borlaug International Scholarship for rice improvement research.
EUROPE – Open access will change the world, if scientists want it to.
UNITED STATES & CANADA – Verisante places Aura Beta Units for safety, verification testing in B.C., Alberta and Ontario clinics.
UNITED STATES & CANADA – Life Technologies sets new worldwide standard for criminal forensic testing with introduction of GlobalFilerTM Express Kit.
UNITED STATES & CANADA – How immune cells can nudge nerves to regrow.
UNITED STATES & CANADA – Improved Genomic Target Selection Using IDT Oligos.
UNITED STATES & CANADA – US team uncover non-invasive method for diagnosing epilepsy.
This chapter delves into the diverse chemical and physical environments encountered in materials science. It investigates the phenomena of chemical absorptions, intercalations, substitutions, decorations, heterojunctions, and physical perturbations. By examining the effects of these factors on materials, it uncovers insights into the modification and optimization of material properties for targeted applications. This comprehensive exploration equips researchers and engineers with the knowledge necessary to manipulate and enhance material behavior in specific chemical and physical environments.
Water may become a medium for attacks through chemical, biological, radiological, nuclear, explosives, cyber impacts (CBRNE/cyber terrorism), and psychological operations from terrorists. The objective of this paper is to discuss strategies, policy, practice and technologies that prevent, disrupt, respond, mitigate and assist recovery from waterborne threats.
It is proposed that mitigation of potential waterborne components of CBRNE/cyber terrorism is critical for the sustainability of cities and that the problem can be addressed within a wider definition of waterborne threats to cover conflict, natural hazards and accidents as well as CBRNE/cyber terrorism. Included within the scope of this discussion are radiological ‘dirty bombs’, improvised nuclear devices and conventional conflicts between nations. Psychological operations of terror groups may have significant impacts in attacks on water facilities. Recommendations are made for new forms of fast, near-real time, trusted and unambiguous scientific communications techniques to mitigate unnecessary fear in the population and to limit other harmful effects.
Two case studies are presented to illustrate the importance of the sustainability of cities from waterborne threats. The first case study, of the Fukushima Daiichi Nuclear Power Plant (NPP) accident, shows the capacity of Tokyo to function despite city-wide contamination from Caesium-137 and Iodine-131—although rural Japan continues to have unresolved challenges to agricultural land sustainability a year after the disaster. The second case study discusses Iran as a country under threat of conflicts which may breach underground and aboveground nuclear facilities, including a nuclear reactor. The potential for a perceived threat to fragile water resources within this region illustrates the importance of scientific communications for real-time public advice (for example on whether any incident requires shelter in-situ or evacuation) and the formulation of twelve hour plans to recover cities’ water access to prevent panic and refugee movements.