Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterNo Access

    The chiral phase transition temperature in (2+1)-flavor QCD

    The chiral phase transition temperature T0c is a fundamental quantity of QCD. To determine this quantity we have performed simulations of (2 + 1)-flavor QCD using the Highly Improved Staggered Quarks (HISQ/tree) action on Nτ=6, 8 and 12 lattices with aspect ratios Nσ/Nτ ranging from 4 to 8. In our simulations we fix the strange quark mass to its physical value mphys, and vary the values of two degenerate light quark masses ml from mphys/20 to mphys/160 which correspond to a Goldstone pion mass mπ ranging from 160 MeV to 55 MeV in the continuum limit. We employ two estimators T60 and Tδ to extract the chiral phase transition temperature T0c, after taking the chiral limit, thermodynamic limit and continuum limit, we present our current estimate for T0c=132+36MeV.

  • chapterNo Access

    NEW APPROACHES TO STRONG COUPLING LATTICE QCD

    Efficient cluster algorithms have recently been discovered to solve strong coupling lattice QCD with staggered fermions in the chiral limit from first principles. This allows us for the first time to uncover the universal properties close to chiral phase transitions and make connections with chiral perturbation theory. In this article we will review some of the recent progress and outline some possible directions for future work.