Cisplatin is massively used to treat solid tumors. However, several severe adverse effects, such as cardiotoxicity, are obstacles to its clinical application. Cardiotoxicity may lead to congestive heart failure and even sudden cardiac death in patients receiving cisplatin. Therefore, finding a novel therapeutic strategy for the prevention of cisplatin-induced cardiotoxicity is urgent. Quercetin is a flavonol compound that can be found in dietary fruits and vegetables. The antioxidant function and anti-inflammatory capacity of quercetin have been reported. However, whether quercetin could protect against cisplatin-caused apoptosis and cellular damage in cardiomyocytes is still unclear. H9c2 cardiomyocytes were treated with cisplatin (40 μM) for 24 h to induce cellular damage with or without quercetin pretreatment. We found that quercetin activates Nrf2 and HO-1 expression, thereby mitigating cisplatin-caused cytotoxicity in H9c2 cells. Quercetin also increases SOD levels, maintains mitochondrial function, and reduces oxidative stress under cisplatin stimulation. Quercetin attenuates cisplatin-induced apoptosis and inflammation in H9c2 cardiomyocytes; however, these cytoprotective effects were diminished by silencing Nrf2 and HO-1. In conclusion, this study reports that quercetin has the potential to antagonize cisplatin-caused cardiotoxicity by reducing ROS-mediated mitochondrial damage and inflammation via the Nrf2/HO-1 and p38MAPK/NF-κBp65/IL-8 signaling pathway. This study provided the theoretical basis and experimental proof for the clinical application of quercetin as a new effective strategy to relieve chemotherapy-induced cardiotoxicity.
Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication of cisplatin, which is characterized by intolerable paresthesia, burning, and hyperalgesia, and severely impacts the life quality of patients. However, no clearly potent drug has been found for clinical medication due to its undefined mechanism. Corydalis Saxicola Bunting, a traditional Chinese medicine, has been proven to work well in anti-inflammation, blood circulations improvement, hemostasis, and analgesia. This study was designed to observe the effects of Corydalis saxicola Bunting total alkaloids (CSBTA) on cisplatin-induced neuropathic pain and to explore its potential mechanisms. In this study, the rats received intraperitoneal injection of 2mg/kg cisplatin twice a week for five weeks. Meanwhile, oral administration of low (30mg/kg)-, medium (60mg/kg)- and high (120mg/kg)-dose CSBTA were given daily for five weeks. By using Von-frey hair, heat radiant and −80∘C cold acetone, we found that CSBTA could obviously relieve cisplatin-induced mechanical, heat, and cold hyperalgesia. It has been verified that cisplatin-induced peripheral neuropathy is related to intraepidermal nerve fibers loss and activation of inflammation downstream. Our research found that Tumor necrosis factor-alpha (TNF-α), Interleukin-1beta (IL-1β), and Prostaglandin E2 (PGE2) were significantly increased by 10 intraperitoneal injections of cisplatin, and such pro-inflammation cytokines could be reduced via CSBTA administration. Besides, in the cisplatin model group, the neuronal structures of dorsal root ganglia (DRG) were severely damaged and the loss of intraepidermal nerve fibers occurred; but in the CSBTA administration groups, all above pathological changes were improved. Moreover, CSBTA could normalize the overexpression levels of p-p38 and Transient receptor potential vanilloid receptor (TRPV1) induced by cisplatin in DRG, trigeminal ganglion (TG), spinal cord, and foot of rats. In summary, we considered that CSBTA exerted its therapeutic effects by ameliorating neuronal damages, improving intraepidermal nerve fiber (IENF) loss, and inhibiting inflammation-induced p38 phosphorylation to block TRPV1 activation. These findings were the first to confirm the analgesic effect of CSBTA on CIPN and suggested a novel strategy for treating CIPN in clinic.
Cisplatin is commonly used as a chemotherapeutic agent against many human cancers. However, it generates reactive oxygen species (ROS) and has serious dose-limiting side effects, including ototoxicity. The roots of Curculigo orchioides (C. orchioides) have been used to treat auditory diseases such as tinnitus and hearing loss in Chinese traditional medicine. In the present study, we investigated the protective effects of an ethanol extract obtained from C. orchioides rhizome (COR) on cisplatin-induced cell damage in auditory cells (HEI-OC1). COR (2.5–25 μg/ml) inhibited cisplatin-induced HEI-OC1 cell damage in a dose-dependent manner. To investigate the protective mechanism of COR on cisplatin cytotoxicity in HEI-OC1 cells, we measured the effects of COR on ROS generation and lipid peroxidation in cisplatin-treated cells as well as its scavenging activities against superoxide radicals, hydroxyl radicals, hydrogen peroxide, and DPPH radicals. COR (1–25 μg/ml) had scavenging activities against superoxide radicals, hydroxyl radicals, hydrogen peroxide, and DPPH radicals, as well as reduced lipid peroxidation. In in vivo experiments, COR was shown to reduce cochlear and peripheral auditory function impairments through cisplatin-induced auditory damage in mice. These results indicate that COR protects from cisplatin-induced auditory damage by inhibiting lipid peroxidation and scavenging activities against free radicals.
Although the protective effect of ginsenoside on cisplatin-induced renal injury has been extensively studied, whether ginsenoside interferes with the antitumor effect of cisplatin has not been confirmed. In this paper, we verified the main molecular mechanism of 20(R)-ginsenoside Rg3 (R-Rg3) antagonizing cisplatin-induced acute kidney injury (AKI) through the combination of in vivo and in vitro models. It is worth mentioning that the two cell models of HK-2 and HepG2 were used simultaneously for the first time to explore the effect of the activation site of tumor-associated protein p53 on apoptosis and tumor suppression. The results showed that a single injection of cisplatin (20 mg/kg) led to weight loss, the kidney index of the mice increased, and creatinine (CRE) and blood urea nitrogen (BUN) levels in mice sharply increased. Continuous administration of R-Rg3 at doses of 10 and 20 mg/kg for 10 days could significantly alleviate this symptom. Similarly, R-Rg3 treatment reduced oxidative stress damage caused by cisplatin. Moreover, R-Rg3 could observably reduce the apoptosis and inflammatory infiltration of renal tubular cells induced by cisplatin. We used western blotting analysis to demonstrate that R-Rg3 restored cisplatin-induced AKI might be related to PI3K/AKT and NF-κB mediated apoptosis and inflammation pathways. In the meantime, we also verified that R-Rg3 could activate different sites of p53 to control renal cell apoptosis induced by cisplatin without affecting its antitumor effect.
Chemotherapy is highly cytotoxic, causing a number of severe adverse effects such as nausea and vomiting. Herbal medicines, which can often be used on a daily basis for prolonged treatment, may be clinically beneficial. Ganoderma lucidum or Lingzhi mushroom has been recognized as a remedy in treating a number of medical conditions, including balancing immunity and decreasing drug-induced side effects. It has been shown that rats react to emetic stimuli, like the chemotherapy agent cisplatin, by increased consumption of kaolin, known as pica; and this rat model has been utilized to evaluate novel anti-emetic compounds. In this study, we evaluated the effects of a G. lucidum extract (SunRecome®, the most commonly used Lingzhi mushroom extract in China) in attenuating cisplatin-induced nausea and vomiting in the rat pica model. We observed that intraperitoneal cisplatin injection caused a significant increase in kaolin intake at 24, 48, 72 and 96 hours, reflecting cisplatin's nausea and vomiting action. This cisplatin-induced kaolin intake dose-dependently decreased after 1, 3 and 10 mg/kg G. lucidum extract injection (p < 0.01). In addition, there was a significant reduction of food intake after cisplatin. The cisplatin-induced food intake reduction improved significantly after G. lucidum extract administrations in a dose-related manner (p < 0.01), suggesting a supportive effect of the extract on general body condition. Future controlled clinical trials are needed to evaluate the safety and effectiveness of this herbal medication.
A randomized phase II study using mitomycin (MMC)/cisplatin (DDP) regimen with or without Kanglaite (KLT, a traditional Chinese medicine) as salvage treatment was conducted to exploit KLT's potential effects on patients with advanced breast cancer (ABC). Triweekly regimen consisted of mitomycin (8 mg/m2) administered intravenously on day 1, and cisplatin (25 mg/m2) intravenously on days 1 to 3. KLT (100 ml) was given intravenously per day on days 1 to 14 every 3 weeks. Between April 2006 and July 2007, 60 patients with a median age of 48 years were randomized into MMC/DDP with or without KLT treatment. In all, the objective response rate (ORR) was 17.5%. There were no significant differences between experimental and control treatments in terms of ORR (14.3% vs. 20.7%, p = 0.730), clinical benefit rates (24.1% vs. 28.6%, p = 0.468), median time to progression (TTP; 3.63 vs. 4.0, p = 0.872), and overall survival (OS; 7.17 vs. not reached, p = 0.120). The median TTP for patients with complete or partial responses was 6.0 months, but only 2.1 months for patients with stable or progressive disease (SD or PD; p = 0.028). While the median OS for patients who obtained clinical benefit from chemotherapy was not reached, that of patients with SD of no more than 6 months or PD was only 7.17 months (p = 0.004). There is no additional benefit when KLT is added to the MMC/DDP doublet in the management of ABC. Patients who obtained clinical benefit from chemotherapy had a longer TTP and OS.
In this paper, the cisplatin composite micro/nanofibers were prepared by electrospinning. Average diameter of the typical products was about 700 nm, and cisplatins were incorporated in biodegradable poly (L-lactic acid) fibers. The controlled release of cisplatin can be gained for long time. The possible mechanisms of cisplatin release in the PBS and the PBS with proteinase K were discussed. 3-(4, 5)-dimethylthiahiazo-(-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) method was used to test antitumor activities in vitro against human lung tumor spc-a-1 cells. When incubation time was 24 h, the same content of cisplatin from virgin cisplatin and the composite fibers has almost equal antitumor activity in vitro. However, when incubation time was 48 h, the composite fibers show much higher antitumor activity than the virgin cisplatin. The system may be useful in the postoperative local chemotherapy and have clinical applications as an implantable drug for tumor in the future.
Since the discovery of cisplatin, drugs based on platinum, have made a significant impact on the treatment of various cancers. The administration of platinum drugs is however accompanied by significant side effects. This chapter discusses the types of drug delivery systems that have been developed in order to enable the targeted delivery while maintaining controlled temporal supply of the drug. The sizes of carriers range from nanometer to micrometer sized particles. The most common types of drug carriers are micelles, liposomes, nanoparticles, and dendrimers, but also a few microspheres have been developed. Most striking aspect of the delivery of platinum drugs is the possibility of physical encapsulation but also the binding of the drug to the polymer carrier coordinate covalent bond. Since platinum drugs have typically two permanent and two leaving ligands, the polymer can be part of either ligand. As the leaving ligand, the platinum drug is released often as cisplatin. If the polymer provides the functionality for the permanent ligand, a new macromolecular drug has been formed. In addition to the attachment of pt(II) drugs, recent offorts are devoted to the conjugation via the Pt((IV) prodrug.
Cisplatin, a platinum chelate with potent antitumor activity against cancers of the testis, ovary, urinary bladder, prostate, and head and neck, has adverse effects on the kidney, bone marrow, and digestive organs, and its use is particularly limited by nephropathy as a side effect. In the present study, safflower seed extract was administered to a mouse model of cisplatin-induced acute renal failure to investigate its activity. Cisplatin (20mg/kg body weight) was administered by intraperitoneal injection to mice that had received oral safflower seed extract (100 or 200mg/kg body weight per day) for the preceding 2 days. Three days after the cisplatin injection, serum and renal biochemical factors; oxidative stress, inflammation, and apoptosis-related protein expression; and histological findings were evaluated. Cisplatin-treated control mice showed body-weight, food intake and water intake loss, and increased kidney weight, whereas the administration of safflower seed extract attenuated these effects (p<0.05, p<0.01). Moreover, safflower seed extract significantly decreased the renal functional parameters urea nitrogen and creatinine in the serum (p<0.05 and p<0.01, respectively). Safflower seed extract also significantly reduced the enhanced levels of reactive oxygen species in the kidney observed following cisplatin treatment, with significance. The expression of proteins related to the anti-oxidant defense system in the kidney was down-regulated following cisplatin treatment, but safflower seed extract significantly up-regulated the expression of the anti-oxidant enzyme catalase. Furthermore, safflower seed extract reduced the overexpression of phosphor (p)-p38, nuclear factor-kappa B p65, cyclooxygenase-2, inducible nitric oxide synthase, ATR, p-p53, Bax, and caspase 3 proteins, and mice treated with safflower seed extract exhibited less renal histological damage. These results provide important evidence that safflower seed extract exerts a pleiotropic effect on several oxidative stress- and apoptosis-related parameters and has a renoprotective effect in cisplatin-treated mice.
Previous reports have confirmed that crude saponins (ginsenosides) in Panax ginseng have a preventive effect on chemotherapy-induced intestinal injury. However, the protective effects and possible mechanisms of ginsenoside Re (G-Re, a maker saponin in ginseng) against chemotherapy-induced intestinal damage have not been thoroughly studied. In this work, a series of experiments in vivo and in vitro on the intestinal toxicity caused by cisplatin have been designed to verify the improvement effect of G-Re, focusing on the levels of Wnt3a and β-catenin. Mice were intragastric with G-Re for 10 days, and intestinal injury was induced by intraperitoneal administration of cisplatin at a dose of 20 mg/kg. Histopathology, gastrointestinal digestive enzyme activities, inflammatory cytokines, and oxidative status were evaluated to investigate the protective effect. Furthermore, in IEC-6 cells, G-Re statistically reverses cisplatin-induced oxidative damage and cytotoxicity. The TUNEL and Hoechst 33258 staining demonstrated that G-Re possesses protective effects in cisplatin-induced apoptosis. Additionally, pretreatment with G-Re significantly alleviated the apoptosis via inhibition of over-expressions of B-associated X (Bax), as well as the caspase family members, such as caspase 3 and 9, respectively, in vivo and in vitro. Notably, western blotting results showed that G-Re treatment decreased Wnt3a, Glycogen synthase kinase 3β (GSK-3β), and β-catenin expression, suggesting that nuclear accumulation of β-catenin was attenuated, thereby inhibiting the activation of GSK-3β-dependent Wnt/β-catenin signaling, which was consistent with our expected results. Therefore, the above evidence suggested that G-Re may be a candidate drug for the treatment of intestinal injury.
This study examined whether serotonin and two of its derivatives, N-feruloylserotonin and N-(p-coumaroyl) serotonin, have a renoprotective effect in a mouse model of cisplatin-induced acute renal failure. Cisplatin (20mg/kg body weight) was administered by intraperitoneal injection to male BALB/c mice that had received oral serotonin, N-feruloylserotonin or N-(p-coumaroyl) serotonin (7.5mg/kg body weight per day) during the preceding 2 days. At 3 days after the cisplatin injection, serum and renal biochemical factors, oxidative stress, inflammation and apoptosis-related protein expression were evaluated, and histological examinations were performed. Cisplatin caused reduction in body weight and an increase in kidney weight; however, N-(p-coumaroyl) serotonin and N-feruloylserotonin attenuated these effects. Moreover, the serotonin derivatives significantly decreased serum urea nitrogen and creatinine levels. They also significantly reduced the level of reactive oxygen species and upregulated the expression of glutathione peroxidase in the kidney. Furthermore, the serotonin derivatives improved the abnormal expression of mitogen-activated protein kinases activation-dependent inflammation- and apoptosis-related protein and caused less renal damage. These results provide important evidence that N-(p-coumaroyl) serotonin and N-feruloylserotonin exert a pleiotropic effect on several parameters related to oxidative stress, inflammation and apoptosis. The derivatives also have a renoprotective effect in cisplatin-treated mice; however, this effect is higher with N-(p-coumaroyl) serotonin.
The serendipitous discovery of the antitumor properties of cisplatin by Barnett Rosenberg some forty years ago brought about a paradigm shift in the field of medicinal chemistry and challenged conventional thinking regarding the role of potentially toxic heavy metals in drugs. Platinum(II)-based anticancer drugs have since become some of the most effective and widely-used drugs in a clinician's arsenal and have saved countless lives. However, they are limited by high toxicity, severe side-effects and the incidence of drug resistance. In recent years, attention has shifted to stable platinum(IV) complexes as anticancer prodrugs. By exploiting the unique chemical and structural attributes of their scaffolds, these platinum(IV) prodrugs offer new strategies of targeting and killing cancer cells. This review summarizes the development of anticancer platinum(IV) prodrugs to date and some of the exciting strategies that utilise the platinum(IV) construct as targeted chemotherapeutic agents against cancer.
Cisplatin and oxaliplatin are two widely-used anti-cancer drugs which covalently bind to a same location in DNA strands. Platinum agents make intrastrand and interstrand cross-links with the N7 atoms of guanine nucleotides which prevent DNA from polymerization by causing a distortion in the double helix. Molecular dynamics simulations and free energy calculations were carried out to investigate the binding of two platinum-based anti-cancer drugs with DNA. We compared the binding of these drugs which differ in their carrier ligands, and hence their potential interactions with DNA. When a platinum agent binds to nucleotides, it causes a high amount of deformation in DNA structure. To find the extent of deformation, torsion angles and base pair and groove parameters of DNA were considered. These parameters were compared with normal B-DNA which was considered as the undamaged DNA. The formation of hydrogen bonds between drugs and DNA nucleotides was examined in solution. It was shown that oxaliplatin forms more hydrogen bonds than cisplatin. Our results confirm that the structure of the platinated DNA rearranges significantly and cisplatin tries to deform DNA more than oxaliplatin. The binding free energies were also investigated to understand the affinities, types and the contributions of interactions between drugs and DNA. It was concluded that oxaliplatin tendency for binding to DNA is more than cisplatin in solvent environment. The binding free energy was calculated based on the MM/PBSA and MM/GBSA methods and the results of QM/MM calculations verified them.
Nausea and vomiting are significant adverse effects of chemotherapeutic agents like cisplatin, and cause significant patient morbidity. Cisplatin treatment results in oxidant gut injury, which is postulated to be the primary cause of nausea and vomiting. We evaluated the effects of two antioxidant herbs, Scutellaria baicalensis and American ginseng berry, on cisplatin-induced nausea and vomiting using a rat model. Rats react to emetic or nausea-producing stimuli, such as cisplatin, with altered feeding habits, manifested by increased kaolin consumption (pica). We measured pica in rats to quantify cisplatin-induced nausea. We observed that pretreatment of rats with S. baicalensis or ginseng berry extracts resulted in a significant reduction in cisplatin-induced pica. The in vitro free radical scavenging ability of the herbal extract observed in the study, further confirmed the antioxidant action of the herb. We conclude that herbal antioxidants may have a role in attenuating cisplatin-induced nausea and vomiting.
Saponins from the roots of Platycodon grandiflorum, an edible medicinal plant, have shown a wide range of beneficial effects on various biological processes. In this study, an animal model was established by a single intraperitoneal injection of cisplatin (20mg/kg) for evaluating the protective effects of saponins from the roots of P. grandiflorum (PGS, 15mg/kg and 30mg/kg) in mice. The results indicated that PGS treatment for 10 days restored the destroyed intestinal mucosal oxidative system, and the loosened junctions of small intestinal villi was significantly improved. In addition, a significant mitigation of apoptotic effects deteriorated by cisplatin exposure in small intestinal villi was observed by immunohischemical staining. Also, western blot showed that PGS could effectively prevent endoplasmic reticulum (ER) stress-induced apoptosis caused by cisplatin in mice by restoring the activity of PERK (an ER kinase)-eIF2α-ATF4 signal transduction pathway. Furthermore, molecular docking results of main saponins in PGS suggested a better binding ability with target proteins. In summary, the present work revealed the underlying protective mechanisms of PGS on intestinal injury induced by cisplatin in mice.
Fluorescence lifetime imaging (FLIM) is increasingly used to read out cellular autofluorescence originating from the coenzyme NADH in the context of investigating cell metabolic state. We present here an automated multiwell plate reading FLIM microscope optimized for UV illumination with the goal of extending high content fluorescence lifetime assays to readouts of metabolism. We demonstrate its application to automated cellular autofluorescence lifetime imaging and discuss the key practical issues associated with its implementation. In particular, we illustrate its capability to read out the NADH-lifetime response of cells to metabolic modulators, thereby illustrating the potential of the instrument for cytotoxicity studies, assays for drug discovery and stratified medicine.
We reported the development of multifunctional poly (lactic-co-glycolic acid) (PLGA)-lecithin-polyethylene glycol (PEG) core-shell nanoparticles (NPs) that combined the beneficial properties of liposome and polymeric NPs for chemotherapeutics delivery. The particle size, surface charge and surface functional groups were easily tunable in highly reproducible manner by various formulation parameters such as lipid/polymer, 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-PEG-COOH/lecithin, DSPE-PEG-COOH/DSPE-PEG-NH2 mass ratio and modification of terminal groups of DSPE-PEG. We encapsulated model chemotherapy drug, hydrophilic cisplatin (DDP) or hydrophobic DDP prodrug, in the NPs and showed high encapsulation efficiency, excellent stability, specific FA targeting recognition for MCF-7 cells with over FA receptors expression and pretty cytotoxicity. Such PLGA–lecithin–PEG core-shell nanoparticles (NPs) were proved to be a promising drug delivery nanocarrier for cancer-targeted therapy.
Platinum-based drugs continue being the support of therapy for many different kinds of cancer. Cancer patients often present irreversible resistance to platinum after repeated treatment in clinic. Despite of the great efforts, chemoresistance (intrinsic or acquired) already is a major limitation in the management of this disease. In this review, the last current research on cancer characteristic and cancer chemical resistance is summarized, the major and novel strategies to reverse resistance to platinum- based drugs are discussed and this article mainly emphasizes the contribution of nanotechnology and combination therapies to target sites and reduce the cancer chemoresistance.
Please login to be able to save your searches and receive alerts for new content matching your search criteria.