Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    COMBINATORIAL KNOT INVARIANTS THAT DETECT TREFOILS

    We construct a series of combinatorial quandle-like knot invariants. We color regions of a knot diagram rather than lines and assign a weight to each coloring. Sets of these weights are the invariants we construct (colorings and weights depend on several parameters).

    Using these invariants, we prove that left and right trefoils are not isotopic using this invariant (in a particular case).

  • articleNo Access

    ON HOMOTOPIES WITH TRIPLE POINTS OF CLASSICAL KNOTS

    We consider a knot homotopy as a cylinder in 4-space. An ordinary triple point p of the cylinder is called coherent if all three branches intersect at p pairwise with the same intersection index. A triple unknotting of a classical knot K is a homotopy which connects K with the trivial knot and which has as singularities only coherent triple points.

    We give a new formula for the first Vassiliev invariant v2(K) by using triple unknottings. As a corollary we obtain a very simple proof of the fact that passing a coherent triple point always changes the knot type. As another corollary we show that there are triple unknottings which are not homotopic as triple unknottings even if we allow more complicated singularities to appear in the homotopy of the triple homotopy.