Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We determine the conformal algebra of Bianchi III and Bianchi V spacetimes or, equivalently, we determine all Bianchi III and Bianchi V spacetimes which admit a proper conformal Killing vector (CKV). The algorithm that we use has been developed in [M. Tsamparlis et al.Class. Quantum. Grav.15, 2909 (1998)] and concerns the computation of the CKVs of decomposable spacetimes. The main point of this method is that a decomposable space admits a CKV if the reduced space admits a gradient homothetic vector, the latter being possible only if the reduced space is flat or a space of constant curvature. We apply this method in a stepwise manner starting from the two-dimensional spacetime which admits an infinite number of CKVs and we construct step by step the Bianchi III and V spacetimes by assuming that CKVs survive as we increase the dimension of the space. We find that there is only one Bianchi III and one Bianchi V spacetime which admit at maximum one proper CKV. In each case, we determine the CKV and the corresponding conformal factor. As a first application in these two spacetimes, we study the kinematics of the comoving observers and the dynamics of the corresponding cosmological fluid. As a second application, we determine in these spacetimes generators of the Lie symmetries of the wave equation.
The fundamental theorem of affine geometry is a classical and useful result. For finite-dimensional real vector spaces, the theorem roughly states that a bijective self-mapping which maps lines to lines is affine-linear. In this paper, we prove several generalizations of this result and of its classical projective counterpart. We show that under a significant geometric relaxation of the hypotheses, namely that only lines parallel to one of a fixed set of finitely many directions are mapped to lines, an injective mapping of the space must be of a very restricted polynomial form. We also prove that under mild additional conditions the mapping is forced to be affine-additive or affine-linear. For example, we show that five directions in three-dimensional real space suffice to conclude affine-additivity. In the projective setting, we show that n+2 fixed projective points in real n-dimensional projective space, through which all projective lines that pass are mapped to projective lines, suffice to conclude projective-linearity.
We show that the isometry group of a polyhedral Hilbert geometry coincides with its group of collineations (projectivities) if and only if the polyhedron is not an n-simplex with n ≥ 2. Moreover, we determine the isometry group of the Hilbert geometry on the n-simplex for all n ≥ 2, and find that it has the collineation group as an index-two subgroup. The results confirm several conjectures of P. de la Harpe for the class of polyhedral Hilbert geometries.
Lie symmetries of various geometrical and physical quantities in general relativity play an important role in understanding the curvature structure of manifolds. The Riemann curvature and Weyl tensors are two fourth-rank tensors in the theory. Interrelations between the symmetries of these two tensors (known as collineations) are studied. Some illustrative examples are also provided.