Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Event shapes have long been used to extract information about hadronic final states and the properties of QCD, such as particle spin and the running coupling. Recently, a family of event shapes, the angularities, has been introduced that depends on a continuous parameter. This additional parameter-dependence further extends the versatility of event shapes. It provides a handle on nonperturbative power corrections, on non-global logarithms, and on the flow of color in the final state.
Dihadron and isolated direct photon-hadron angular correlations have been measured in p + p and p+A collisions to investigate possible effects from transverse-momentum-dependent factorization breaking due to color exchange between partons involved in the hard scattering and the proton remnants. The correlations are sensitive to nonperturbative initial-state and final-state transverse momentum kT and jT in the azimuthal nearly back-to-back region Δφ ∼ π. In this region, transverse-momentum-dependent evolution can be studied when several different hard scales are measured. To have sensitivity to small transverse momentum scales, nonperturbative momentum widths of pout, the out-of-plane transverse momentum component perpendicular to the trigger particle, are measured. To quantify the magnitude of any transverse-momentum-dependent factorization breaking effects, calculations will need to be performed for comparison.