Consider an M × N chess board with each space colored one of K colors. A chromatic rectangle is a rectangular collection of spaces with all four corner spaces colored the same. An M × N : K NCR board is an M × N board for which there exists a K coloring with no chromatic rectangles. If every K coloring includes a chromatic rectangle, then that board is called an M × N : K CR board. The classification as NCR versus CR has been settled for K ∈ {1, 2, 3} and all positive integers N and M.
Note that transposition, or interchanging rows, columns, or colors, will preserve the existence of chromatic rectangles within a coloring. With this in mind, two colorings of a board are called equivalent if one can be produced from the other by such manipulations. This paper establishes that all 10 × 10 : 3 NCR colorings are equivalent.
The results stem from characterizations of NCR colorings. These characterizations permit devising and implementing a backtracking algorithm for finding NCR colorings within a significantly restricted search space. In the 10 × 10 : 3 case, the restricted search space is small enough to complete an exhaustive search in about an hour.
Several NCR colorings for larger boards, with K > 3, are also included.