This paper presents an experimental verification of the theoretical predictions, recently published in [Maggio et al., 1999; De Feo et al., 2000], about the bifurcation phenomena occurring in the Colpitts oscillator. Specifically, we performed an automated series of simulations based on the Spice model and, more importantly, a computer-assisted set of measurements on a concrete realization of the oscillator. It turns out that the bifurcation phenomena exhibited by the oscillator are relatively independent of the simplifying assumptions on the transistor model. Moreover, it is shown that the predicted behaviors can be reproduced experimentally, both qualitatively and quantitatively, in a robust way.