Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Molecular Dynamics (ReaxFF MD) Simulation of Hydrogen Effects on Air Heater Combustion

    Nano19 Feb 2025

    As a fuel commonly used by air heaters for ground tests of high-speed aircraft, the combustion mechanism of ethanol in air heaters is still unclear, especially the atomic-level chemical mechanism of important intermediate products represented by hydrogen in maintaining stable flame combustion needs to be further studied. In this paper, the combustion process of ethanol/oxygen mixtures under different hydrogen additions was simulated using the reactive force field (ReaxFF) molecular dynamics (MD) method. The results show that increasing the proportion of hydrogen in the mixed gas can not only reduce the ignition delay time of ethanol combustion but also promote the consumption of ethanol and accelerate the progress of the combustion reaction. It was also found that hydrogen and ethanol produced a competitive relationship for oxygen, which changed the ideal stoichiometric ratio (1:3) of complete combustion of ethanol and oxygen and significantly affected the intermediate products and reaction paths of ethanol and oxygen. In addition, increasing the combustion reaction temperature will affect the reaction path of ethanol/oxygen, and the number of intermediate products produced will reach the peak faster and then decompose. Theoretical support for a deeper understanding of the intermediate product hydrogen in the combustion of the three-component air heater of ethanol/liquid oxygen/air and also for improving the combustion efficiency of liquid rocket engine fuel are provided in this study.

  • articleNo Access

    NONPERIODIC OSCILLATIONS OF PRESSURE IN A SPARK IGNITION COMBUSTION ENGINE

    We report our results on nonperiodic experimental time series of pressure in a spark ignition engine. The experiments were performed for a low rotational velocity of a crankshaft and a relatively large spark advance angle. We show that the combustion process has many chaotic features. Surprisingly, the reconstructed attractor has a characteristic butterfly shape similar to a chaotic attractor of Lorentz type. The suitable recurrence plot shows that the dynamics of the combustion is a nonlinear multidimensional process mediated by stochastic noise.

  • articleNo Access

    NONLINEAR/CHAOTIC MODELING AND CONTROL OF COMBUSTION INSTABILITIES

    A discrete dynamic model accounting for both combustion and vaporization processes is proposed. In terms of different bifurcation parameters relevant to either combustion or evaporation, various bifurcation diagrams are presented. Furthermore, the corresponding Lyapunov exponent is calculated and employed to analyze the stability of the particular dynamic system. The study indicates conclusively that the evaporation process has a significant impact on the intensity and nonlinear behavior of the system of interest, vis-à-vis a model accounting for only the gaseous combustion process. Moreover, a minimum entropy control method is employed to control the chaotic behavior inherent to the system of interest. This algorithm is intended to be implemented for control of combustion instability numerically and experimentally to provide a basis for some of the control methodologies employed in the literature.

  • articleNo Access

    CHROMATICITY DEPENDENCE ON Eu CONCENTRATION IN Y2O3:Eu NANOPOWDERS

    Nano01 Apr 2010

    Y2O3:Eu nanopowders were synthesized by urea combustion method containing different concentration of Eu. The synthesized Y2O3:Eu nanopowders were characterized by X-ray diffractometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), energy dispersive X-ray analysis (EDX) and photoluminescence spectroscopy (PL). The particle size was calculated to be in the range of 15–30 nm using Scherrer's formula. The Ia-3 structure of synthesized Y2O3:Eu nanopowders were confirmed with X-ray diffractometry. The crystallinity of Y2O3:Eu nanopowders were confirmed by SAED and TEM images. The 5D0–∑7FJ (J = 0, 1, 2, 3) and 5D17F1 transitions bands were observed at 575–650 and 530–550 ranges in the photoluminescence spectrum. The concentration quenching was estimated to be about 5 mol% of Eu. The best chromaticity to the standard red color was observed with the sample containing 3 mol% of Eu.