Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The paper presents an overview of multiscale modeling of advanced fibrous composite materials. Following the review, a nonlinear, fully three-dimensional, numerical model is proposed which is suitable for multiscale elastic and progressive failure analysis of plain-woven composite materials. The proposed model is developed for implementation into the Finite Element code ABAQUS/Explicit as a user-defined subroutine for constant stress (one integration point) solid elements.
The multiscale strategy applied in this paper uses a closed-form solution approach for homogenization of the mesoscale properties of a woven composite. A mosaic model of the woven composite's Representative Volume Element (RVE) is used for deriving the micromechanical relations used for homogenization. The composite RVE model used herein is composed of UD interlacing yarns (fill and warp yarns) and matrix-rich regions. For failure and damage analysis, the following features are implemented in this work: material nonlinearity for pure in-plane shear deformation; physically-based failure criteria for matrix failure in the UD yarns; maximum stress failure criteria for failure of fibers in the UD yarns and of the pure matrix in the resin-rich regions and energy-based damage mechanics.
The proposed strategy, which has been implemented and tested for a special case of an in-plane damage, has some evident advantages compared to the other approaches, especially for application to full-scale simulations, i.e., component and structural scales.
A comparison of the proposed model with experimental data shows a good correlation can be achieved.
Advanced composites are increasingly being used as a structural material because of their balanced properties, higher impact resistance, and easier handling and fabrication compared with unidirectional composites. However, complex architecture of these composites leads to difficulties in predicting the mechanical response necessary for product design. Different methods for micromechanical analysis for the evaluation of effective mechanical properties of advanced composites are compared. Difficulties in modeling are highlighted and recommendations are given for micromechanical analysis using the finite element method.
The present study deals with both experimental and numerical investigation on vibration behavior of laminated composite plates subjected to varying temperature and moisture. Extensive experiments are carried out for free vibration analysis of woven fiber Glass/Epoxy composite plates under hygrothermal conditions. The specimens were hygrothermally conditioned in a humidity cabinet where the conditions were maintained at high temperatures and moisture concentrations.
A recently proposed criterion is used to study the behavior of debonds produced at a fiber–matrix interface. The criterion is based on the Linear Elastic–(Perfectly) Brittle Interface Model (LEBIM) combined with a Finite Fracture Mechanics (FFM) approach, where the stress and energy criteria are suitably coupled. Special attention is given to the discussion about the symmetry of the debond onset and growth in an isolated single fiber specimen under uniaxial transverse tension. A common composite material system, glass fiber–epoxy matrix, is considered. The present methodology uses a two-dimensional (2D) Boundary Element Method (BEM) code to carry out the analysis of interface failure. The present results show that a non-symmetrical interface crack configuration (debonds at one side only) is produced by a lower critical remote load than the symmetrical case (debonds at both sides). Thus, the non-symmetrical solution is the preferred one, which agrees with the experimental evidences found in the literature.
The embedded atom method (EAM) is used to construct an interatomic potential for modelling interfaces in Cu–Nb nanocomposites. Implementation of the Ziegler–Biersack–Littmark (ZBL) model for short-range interatomic interactions enables studies of response to ion bombardment. Collision cascades are modelled in fcc Cu, bcc Nb, and in Cu–Nb layered composites in the experimentally-observed Kurdjumov–Sachs (KS) orientation relation. The interfaces in these composites reduce the number of vacancies and interstitials created per keV of the primary knock-on atom (PKA) by 50–70% compared to fcc Cu or bcc Nb.
Natural fibers are extracted from natural resources such as stems of plants. In contrast to synthetic fibers (e.g., carbon fibers), natural fibers are from renewable resources and are eco-friendlier. Plant fibers are important members of natural fibers. Review papers discussing the microstructures, performances and applications of natural plant fiber composites are available in the literature. However, there are relatively fewer review reports focusing on the modeling of the mechanical properties of plant fiber composites. The microstructures and mechanical behavior of plant fiber composites are briefly introduced by highlighting their characteristics that need to be considered prior to modeling. Numerical works that have already been carried out are discussed and summarized. Unlike synthetic fibers, natural plant fiber composites have not received sufficient attention in terms of numerical simulations. Existing technical challenges in this subject are summarized to provide potential opportunities for future research.
An attempt has been made to investigate steady state creep behavior of thermally graded isotropic discs rotating at elevated temperatures. For this purpose, composite discs of aluminum matrix reinforced with silicon carbide particulate have been taken. Modeling of stress and strain rate distributions for discs operating under linear thermal gradient has been done using von Mises’ yield criterion and threshold stress-based creep law. Similarly modeling has been done for discs operating under non-linear thermal gradient. The results are compared with the disc having a uniform temperature profile from inner to outer radius and are displayed graphically in designer friendly format for the said temperature profiles. A small variation is observed for radial and tangential stresses for the said thermal gradations. However, the strain rates vary significantly in the presence of thermal gradations as compared to a disc having uniform temperature throughout the radial distance. Thus, it is observed that there is a need to extend the domain of thermal gradation for designing rotating discs.
This study reports the optimal frequencies and damping factor of the honeycomb sandwich composite plates. The sandwich panel face sheets have been considered as layered composite and honeycomb core. The higher-order shear deformation theory has been adopted to formulate the structural model and solve the governing equations of motion of sandwich structures to compute the frequencies. An optimal layout of the honeycomb composite laminated sandwich structure is being utilized to improvise both the fundamental natural frequencies and damping factors using a teaching–learning-centered artificial bee colony (TLABC). An experimental investigation is performed to demonstrate the effectiveness of the current TLABC algorithm to identify the optimal values by comparing them with numerically obtained results. Additionally, for the optimal layer sequences and the fiber orientations of the composite laminated plates, several optimization problems are developed with the objective functions of frequency maximization and modal damping factors (MDF). The TLABC algorithm integrated with finite element method has been utilized to evaluate the said responses. Hence, it is concluded that the efficient design layout of a honeycomb sandwich composite plate configurations would provide the guidelines for the designer to control the vibration effectively.
The majority of ultrasonic characterizations are done on thermoplastics, with just a few articles available on the characterization of thermoset resin characteristics. A non-destructive methodology for monitoring fatigue and static deformation induced by mechanical loading on a fiber-reinforced plastic is presented. However, these materials’ dynamics of elastic waves are considerably more complicated. A large part was devoted to the calculation of dispersion curves of guided waves in composites. Therefore, this study presents a thorough description of the Glass/Epoxy system by comparing ultrasonic and mechanical data. Ultrasonic wave propagation at high frequencies, functioning as a dynamic mechanical deformation, may be utilized to calculate longitudinal and shear moduli during static and dynamic loading. The evolution of attenuation and velocity during loading is linked to the significant changes that occur during the aging process. The experimental transfer function is determined by the Fourier transform of all the obtained ultrasonic echoes.
The influence of the thermal residual stress and reinforcement geometry on the creep behavior of a composite disc has been analyzed in this paper. The creep analysis in a rotating disc made of Al-SiC (particle/whisker) composite having hyperbolically varying thickness has been carried out using anisotropic Hoffman yield criterion and results obtained are compared with those using Hill's criterion ignoring difference in yield stresses. The steady state creep behavior has been described by Sherby's creep law. The creep parameters characterizing difference in yield stresses have been used from the available experimental results in literature. It is observed that the stresses are not much affected by the presence of thermal residual stress, while thermal residual stress introduces significant change in the strain rates in an anisotropic rotating disc. Secondly, it is noticed that the steady state creep rates in whisker reinforced disc with/without residual stress are observed to be significantly lower than those observed in particle reinforced disc with/without residual stress. It is concluded that the presence of residual stress in an anisotropic disc with varying thickness needs attention for designing a disc.
In this paper, an effort has been made to study the effect of anisotropy on the steady state creep behavior in the functionally graded material disc with hyperbolic thickness made of Al-SiC (particle). The content of silicon carbide particles in the disc is assumed to decrease linearly from the inner to the outer radius of the disc. The creep behavior of the disc under stresses developing due to rotation at 15,000 rpm has been determined by Sherby's law. The creep parameters of the FGM disc vary along the radial distance due to varying composition and this variation has been estimated by regression fit of the available experimental data. The creep response of rotating disc is expressed by a threshold stress with value of stress exponent as 8. The study reveals that the anisotropy has a significant effect on the steady state creep response of rotating FGM disc. Thus, the care to introduce anisotropy should be taken for the safe design of the rotating FGM disc with hyperbolic thickness.
The purpose of this study is to develop a lightweight design model for an 18ft leisure boat. The existing leisure boat is manufactured using glass fiber-reinforced plastics (GFRP) material and the hand lay-up process. Carbon fiber-reinforced plastics (CFRP) was applied to the new design to reduce the boat’s weight, while an automated tape laying machine was applied to the lightweight boat’s manufacturing process to increase boat manufacturing productivity. The newly designed CFRP model is 25% lighter than the existing GFRP model. It was confirmed that the newly designed lightweight hull has sufficient structural integrity compared to the existing hull through the structural integrity evaluation by the FEA.