Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, we deal with the construction of gap functions for variational inequalities by using an approach which bases on the conjugate duality. Under certain assumptions we also investigate a further class of gap functions for the variational inequality problem, the so-called dual gap functions.
This paper derives first order necessary and sufficient conditions for unconstrained cone d.c. programming problems where the underlined space is partially ordered with respect to a cone. These conditions are given in terms of directional derivatives and subdifferentials of the component functions. Moreover, conjugate duality for cone d.c. optimization is discussed and weak duality theorem is proved in a more general partially ordered linear topological vector space (generalizing the results in [11]).