Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Rarefied gas flow behavior in micro/nanochannels under specified wall heat flux

    In this paper, we investigate the effects of convective heat transfer on the argon gas flow through micro/nanochannels subject to uniform wall heat flux (UWH) boundary condition using the direct simulation Monte Carlo (DSMC) method. Both the hot wall (qwall > 0) and the cold wall (qwall < 0) cases are considered. We consider the effect of wall heat flux on the centerline pressure, velocity profile and mass flow rate through the channel in the slip regime. The effects of rarefaction, property variations and compressibility are considered. We show that UWH boundary condition leads to the thermal transpiration. Our investigations showed that this thermal transpiration enhances the heat transfer rate at the walls in the case of hot walls and decreases it where the walls are being cooled. We also show that the deviation of the centerline pressure distribution from the linear distribution depends on the direction of the wall heat flux.