Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    LONG-RANGE INFORMATION AND PHYSICALITY CONSTRAINTS IMPROVE PREDICTED PROTEIN CONTACT MAPS

    Protein topology representations such as residue contact maps are an important intermediate step towards ab initio prediction of protein structure, but the problem of predicting reliable contact maps is far from solved. One of the main pitfalls of existing contact map predictors is that they generally predict unphysical maps, i.e. maps that cannot be embedded into three-dimensional structures or, at best, violate a number of basic constraints observed in real protein structures, such as the maximum number of contacts for a residue. Here, we focus on the problem of learning to predict more "physical" contact maps. We do so by first predicting contact maps through a traditional system (XXStout), and then filtering these maps by an ensemble of artificial neural networks. The filter is provided as input not only the bare predicted map, but also a number of global or long-range features extracted from it. In a rigorous cross-validation test, we show that the filter greatly improves the predicted maps it is input. CASP7 results, on which we report here, corroborate this finding. Importantly, since the approach we present here is fully modular, it may be beneficial to any other ab initio contact map predictor.

  • chapterNo Access

    Analytic approximations of geometric maps and applications to KAM theory

    We show that finitely differentiable diffeomorphisms that are either symplectic, volume-preserving, or contact can be approximated with analytic diffeomorphisms that are, respectively, symplectic, volume-preserving, or contact…

    Note from Publisher: This article contains the abstract only.

  • chapterNo Access

    DATA MINING TECHNIQUES

    Data mining is the semi-automatic discovery of patterns, associations, changes, anomalies, and statistically significant structures and events in data. Traditional data analysis is assumption driven in the sense that a hypothesis is formed and validated against the data. Data mining, in contrast, is data driven in the sense that patterns are automatically extracted from data. The goal of this tutorial is to provide an introduction to data mining techniques. The focus will be on methods appropriate for mining massive datasets using techniques from scalable and high performance computing. The techniques covered include association rules, sequence mining, decision tree classification, and clustering. Some aspects of preprocessing and postprocessing are also covered. The problem of predicting contact maps for protein sequences is used as a detailed case study.

    The material presented here is compiled by LW based on the original tutorial slides of MJZ at the 2002 Post-Genome Knowledge Discovery Programme in Singapore.