Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We present a theoretical study of electronic states and magnetization of two interacting electrons confined in coupled quantum dots (CQDs) presented in a magnetic field. We obtain the eigenenergies of the CQD by solving the relative two-dimensional (2D) Hamiltonian using the combined variational–exact diagonalization method. The dependence of magnetization on temperature, magnetic field strength, confining frequency and barrier height has been investigated. We have shown the singlet–triplet transitions in the ground state of the CQD spectra and the corresponding jumps in the magnetization curves. The comparisons show that our results are in very good agreement with the reported works.