Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This paper is a contribution to the project "emergent quantum mechanics" unifying a variety of attempts to treat quantum mechanics (QMs) as emergent from other theories pretending on finer descriptions of quantum phenomena. More concretely it is about an attempt to model detection probabilities predicted by QM for single photon states by using classical random fields interacting with detectors of the threshold type. Continuous field model, prequantum classical statistical field theory (PCSFT), was developed in recent years and its predictions about probabilities and correlations match well with QM. The main problem is to develop the corresponding measurement theory which would describe the transition from continuous fields to discrete events, "clicks of detectors". Some success was achieved and the click-probabilities for quantum observables can be derived from PCSFT by modeling interaction of fields with the threshold type detectors. However, already for the coefficient of second-order coherence g2(0) calculations are too complicated and only an estimation of g2(0) was obtained. In this paper, we present results of numerical simulation based on PCSFT and modeling of interaction with threshold type detectors. The "prequantum random field" interacting with a detector is modeled as the Brownian motion in the space of classical fields (Wiener process in complex Hilbert space). Simulation for g2(0) shows that this coefficient approaches zero with increase of the number of detections.
This paper develops univariate and multivariate measures of risk aversion for correlated risks. We derive Rubinstein's measures of risk aversion from the risk premiums with correlated random initial wealth and risk. It is shown that these measures are not only consistent with those for uncorrelated or independent risks, but also have the corresponding local properties of the Arrow-Pratt measures of risk aversion. Thus Rubinstein's measures of risk aversion are the appropriate extension of the Arrow-Pratt measures of risk aversion in the univariate case. We also derive a risk aversion matrix from the risk premiums with correlated initial wealth and risk vectors. This matrix measure is the multivariate version of Rubinstein's measures and is also the generalization of Duncan's results for non-random initial wealth. The univariate and multivariate measures of risk aversion developed in this paper are applied to portfolio theory in Li and Ziemba [15].