Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    MICROCRACKS IN ~ 100 MeV Si7+-ION-IRRADIATED p-SILICON SURFACES

    The p-silicon surfaces have been irradiated with ~ 100 MeV Si7+ions to a fluence of 2.2×1013 ions cm-2, and surface morphology has been studied with atomic force microscopy (AFM). Interesting features of cracks of ~ 47 nm in depth and ~ 103 nm in width on the irradiated surfaces have been observed. The observed features seemed to have been caused by the irradiation-induced stress in the irradiated regions of the target surface.

  • articleNo Access

    THE EFFECT OF RARE EARTH ON THE STRUCTURE AND PERFORMANCE OF LASER CLAD COATINGS

    Laser cladding is one kind of advanced surface modification technology and has the abroad prospect in making the wear-resistant coating on metal substrates. However, the application of laser cladding technology does not achieve the people's expectation in the practical production because of many defects such as cracks, pores and so on. The addiction of rare earth can effectively reduce the number of cracks in the clad coating and enhance the coating wear-resistance. In the paper, the effects of rare earth on metallurgical quality, microstructure, phase structure and wear-resistance are analyzed in turns. The preliminary discussion is also carried out on the effect mechanism of rare earth. At last, the development tendency of rare earth in the laser cladding has been briefly elaborated.