Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    Online and Cross-User Finger Movement Pattern Recognition by Decoding Neural Drive Information from Surface Electromyogram

    Cross-user variability is a well-known challenge that leads to severe performance degradation and impacts the robustness of practical myoelectric control systems. To address this issue, a novel method for myoelectric recognition of finger movement patterns is proposed by incorporating a neural decoding approach with unsupervised domain adaption (UDA) learning. In our method, the neural decoding approach is implemented by extracting microscopic features characterizing individual motor unit (MU) activities obtained from a two-stage online surface electromyogram (SEMG) decomposition. A specific deep learning model is designed and initially trained using labeled data from a set of existing users. The model can update adaptively when recognizing the movement patterns of a new user. The final movement pattern was determined by a fuzzy weighted decision strategy. SEMG signals were collected from the finger extensor muscles of 15 subjects to detect seven dexterous finger-movement patterns. The proposed method achieved a movement pattern recognition accuracy of (93.94±1.54)% over seven movements under cross-user testing scenarios, much higher than that of the conventional methods using global SEMG features. Our study presents a novel robust myoelectric pattern recognition approach at a fine-grained MU level, with wide applications in neural interface and prosthesis control.