Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This study presents a framework for dynamic analysis of a coupled system of high-speed maglev train and curved viaduct. A series of trajectory coordinates are used to define the motion of maglev vehicles moving over a horizontally curved track, the stiffness and damping matrices of the equations can be thus reduced into those of the straight track. The curved viaduct system is modeled in the global coordinate system using the finite element method, in which the inner and outer rails in the different horizontal planes are duly included. The electromagnet force-air gap model is adopted for the maglev vehicle via its electromagnets and rails on the viaduct, by appropriate transformation of coordinates. By applying the proposed framework to the Shanghai maglev line, curved path-induced dynamic responses and characteristics of the vehicle are explored, which agree well with the measurement ones. The dynamic responses of the curved viaduct are also examined in the vertical, lateral and rotational directions by comparison with the straight viaduct. Moreover, the effect of various curve radii and cant deficiencies on the coupled system are investigated. The results show that for a maglev vehicle moving with an initial equilibrium state, its lateral and rotational response are mainly excited by track roughness. In addition to the track radius, cant deficiencies significantly affect the operational safety of the viaduct.
Viaducts with steel bearings are subject to damage during earthquakes. Damage to conventional steel bearings could cause viaduct decks to collapse. This study attempts to prevent large displacements by installing steel stoppers at both sides of roller bearings. Shock absorber devices (SADs) are also installed between roller bearings and stoppers to reduce pounding forces. The study then explores the effectiveness of different stopper gaps and SADs installed between roller bearings and stoppers in mitigating viaduct damage. The effectiveness of stoppers without and with SADs is also investigated. The pounding forces between roller bearings and stoppers, the displacements on the tops of piers, the displacements of superstructures, and the bending moment–curvature relationship at pier bases are evaluated accordingly. Numerical results reveal that earthquake damage to viaducts with small stopper gaps is not significant. The application of SADs is also found to significantly mitigate viaduct damage.