Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    DYNAMICS OF DIELECTROPHORETIC FIELD-FLOW FRACTIONATION (DEP-FFF) BASED MICRO SORTER FOR CELL SEPARATION

    Dielectrophoretic Field-Flow Fractionation (DEP-FFF) is a technique that selects particles of interest from a mixture of many samples. Conventional DEP-FFF technique used DEP force to levitate particles to different heights according to their dielectric properties. Levitated particles are then separated by their velocity difference in a microchannel. Numerical simulation and experimental results found that particles become wavy trajectory when the ratio of levitation height (hp) and average of electrode width and spacing (d) is below 0.6 (hp/d<0.6). In the mean time, sorted particles disperse randomly in Y-direction, too. The wavy trajectory and random distribution cause cell separation imprecisely. A novel MEMS-fabricated DEP-FFF based micro sorters is designed to improve these problems. The experimental results show that the particles can be levitated to a constant height and focus into a single particle stream along the centerline in the new micro sorter design. One can conclude that the new design leads to better cell separation in a DEP-FFF based micro sorter.