Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    k-ANONYMITY: A MODEL FOR PROTECTING PRIVACY

    Consider a data holder, such as a hospital or a bank, that has a privately held collection of person-specific, field structured data. Suppose the data holder wants to share a version of the data with researchers. How can a data holder release a version of its private data with scientific guarantees that the individuals who are the subjects of the data cannot be re-identified while the data remain practically useful? The solution provided in this paper includes a formal protection model named k-anonymity and a set of accompanying policies for deployment. A release provides k-anonymity protection if the information for each person contained in the release cannot be distinguished from at least k-1 individuals whose information also appears in the release. This paper also examines re-identification attacks that can be realized on releases that adhere to k-anonymity unless accompanying policies are respected. The k-anonymity protection model is important because it forms the basis on which the real-world systems known as Datafly, μ-Argus and k-Similar provide guarantees of privacy protection.

  • articleNo Access

    ACHIEVING k-ANONYMITY PRIVACY PROTECTION USING GENERALIZATION AND SUPPRESSION

    Often a data holder, such as a hospital or bank, needs to share person-specific records in such a way that the identities of the individuals who are the subjects of the data cannot be determined. One way to achieve this is to have the released records adhere to k-anonymity, which means each released record has at least (k-1) other records in the release whose values are indistinct over those fields that appear in external data. So, k-anonymity provides privacy protection by guaranteeing that each released record will relate to at least k individuals even if the records are directly linked to external information. This paper provides a formal presentation of combining generalization and suppression to achieve k-anonymity. Generalization involves replacing (or recoding) a value with a less specific but semantically consistent value. Suppression involves not releasing a value at all. The Preferred Minimal Generalization Algorithm (MinGen), which is a theoretical algorithm presented herein, combines these techniques to provide k-anonymity protection with minimal distortion. The real-world algorithms Datafly and μ-Argus are compared to MinGen. Both Datafly and μ-Argus use heuristics to make approximations, and so, they do not always yield optimal results. It is shown that Datafly can over distort data and μ-Argus can additionally fail to provide adequate protection.