Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Starting from the derivation of an analytical method to expand measured static displacement data to full degrees of freedom, this study proposes a damage detection method to detect the damage of damaged beam by introducing displacement curvature and damage factor (DF). The validity of the proposed method is evaluated in damaged beam system that two simple beams are perpendicularly interconnected at a point.
In recent years, the development of deep learning has contributed to various areas of machine learning. However, deep learning requires a huge amount of data to train the model, and data collection techniques such as web crawling can easily generate incorrect labels. If a training dataset has noisy labels, the generalization performance of deep learning significantly decreases. Some recent works have successfully divided the dataset into samples with clean labels and ones with noisy labels. In light of these studies, we propose a novel data expansion framework to robustly train the models on noisy labels with the attention mechanisms. First, our method trains a deep learning model with the sample selection approach and saves the samples selected as clean at the end of training. The original noisy dataset is then extended with the selected samples and the model is trained on the dataset again. To prevent over-fitting and allow the model to learn different patterns of the selected samples, we leverage the attention mechanism of deep learning to modify the representation of the selected samples. We evaluated our method with synthetic noisy labels on CIFAR-10 and CUB-200-2011 and real-world dataset Clothing1M. Our method obtained comparable results to baseline CNNs and state-of-the-art methods.
A method for estimating ground reaction force (GRF) with plantar pressure was proposed in this paper. The estimation model was constructed to approximate the nonlinear relationships between GRF and the plantar pressure according to the linear combinations of Gaussian kernel functions. Partial least squares regression (PLSR) was adopted to obtain model parameters and eliminate multicollinearity among the pressure components. The general model and subject-specific models were constructed for 12 male and 4 female subjects. Moreover, a data expansion method was introduced for the establishment of subject-specific model, which is implemented by searching and adopting the data with consistent statistical characteristics in a pre-established database. That approach is particularly meaningful for the group whose walking ability is limited or clinic where the force platform is not available. The NRMSEs (%) for general model were 5.27–7.85% (GRF_V), 7.35–8.53% (GRF_ML), and 8.82–10.54% (GRF_AP). The maximum NRMSEs (%) for subject-specific models were 5.02% (GRF_V), 9.91% (GRF_ML), and 10.23% (GRF_AP). Results showed that both general and subject-specific models achieved higher accuracy than existing methods such as linear regression and neural network methods.