In this paper, we establish the notion of (r, s)-stability concerning spacelike hypersurfaces with higher-order mean curvatures linearly related in conformally stationary spacetimes of constant sectional curvature. In this setting, we characterize (r, s)-stable closed spacelike hypersurfaces through the analysis of the first eigenvalue of an operator naturally attached to the higher-order mean curvatures. Moreover, we obtain sufficient conditions which assure the (r, s)-stability of complete spacelike hypersurfaces immersed in the de Sitter space.