Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    DEADLOCK-FREE ROUTING IN IRREGULAR NETWORKS USING PREFIX ROUTING

    We propose a deadlock-free routing scheme in irregular networks using prefix routing. Prefix routing is a special type of routing with a compact routing table associated with each node (processor). Basically, each outgoing channel of a node is assigned a special label and an outgoing channel is selected if its label is a prefix of the label of the destination node. Node and channel labeling in an irregular network is done through constructing a spanning tree. The routing process follows a two-phase process of going up and then down along the spanning tree, with a possible cross channel (shortcut) between two branches of the tree between two phases. We show that the proposed routing scheme is deadlock- and livelock-free. We also compare prefix routing with the existing up*/down* routing which has been widely used in irregular networks. Possible extensions are also discussed.

  • articleNo Access

    FAULT-TOLERANT COMMUNICATIONS ON HYPERCUBE-CLUSTERS

    Hierarchical interconnection networks with n-dimensional hypercube clusters can strike a balance between wide application suitability, size scalability as well as reliability. Cluster communications support for such networks must therefore be reliable and efficient without incurring large overheads. This paper proposes a reliable and cost-effective intra-cluster communications strategy for such a class of interconnection networks. The routing algorithm can tolerate up to (n - 1) component faults in the cluster and generates routes that are cycle-free and livelock-free. The message is guaranteed to be optimally (respectively, sub-optimally) delivered within a maximum of n (respectively, 2n - 1) hops. The message overhead incurred is one of the lowest reported for the specified fault tolerance level – with only a single n-bit routing vector accompanying the message to be communicated. Finally, routing hardware support may be simply achieved with standard components, facilitating integration with the host network.