Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    SPECTRAL NUMERICAL SIMULATION OF MAGNETO-PHYSIOLOGICAL LAMINAR DEAN FLOW

    A computational simulation of magnetohydrodynamic laminar blood flow under pressure gradient through a curved bio-vessel, with circular cross-section is presented. Electrical conductivity and other properties of the biofluid (blood) are assumed to be invariant. A Newtonian viscous flow (Navier–Stokes magnetohydrodynamic) model is employed which is appropriate for large diameter blood vessels, as confirmed in a number of experimental studies. Rheological effects are therefore neglected as these are generally only significant in smaller diameter vessels. Employing a toroidal coordinate system, the steady-state, three-dimensional mass and momentum conservation equations are developed. With appropriate transformations, the transport model is non-dimensionalized and further simplified to a pair of axial and secondary flow momenta equations with the aid of a stream function. The resulting non-linear boundary value problem is solved with an efficient, spectral collocation algorithm, subject to physically appropriate boundary conditions. The influence of magnetic body force parameter, Dean number and vessel curvature on the flow characteristics is examined in detail. For high magnetic parameter and Dean number and low curvature, the axial flow is observed to be displaced toward the center of the vessel with corresponding low fluid particle vorticity strengths. Visualization is achieved with the MAPLE software. The simulations are relevant to cardiovascular biomagnetic flow control.

  • articleNo Access

    HEAT TRANSFER ENHANCEMENT IN A HELICALLY COILED TUBE WITH Al2O3/WATER NANOFLUID UNDER LAMINAR FLOW CONDITION

    In this experimental investigation, the heat transfer coefficients of a shell and helically coiled tube heat exchanger using Al2O3/water nanofluid under laminar flow condition were studied. The Al2O3 nanoparticles were characterized by X-Ray diffraction (XRD). The Al2O3/water nanofluid at 0.1%, 0.4% and 0.8% particle volume concentration were prepared by using two step method. The prepared nanofluid was characterized by scanning electron microscope (SEM). It is observed that the overall heat transfer coefficient, inner heat transfer coefficient and experimental inner Nusselt number increase while increasing particle volume concentration and increasing inner Dean number. The enhancement of overall heat transfer coefficient was found to be 7%, 16.9% and 24.2% at 0.1%, 0.4% and 0.8% Al2O3/water nanofluid respectively when compared with water. The enhancement of tube side experimental Nusselt number was found to be 17%, 22.9% and 28% at 0.1%, 0.4% and 0.8% particle volume concentration of Al2O3/water nanofluid respectively when compared with water at fixed Dean number. The tests were conducted in the range of 1600 < De < 2700, and 5200 < Re < 8600 under laminar flow condition and counter flow configuration. These enhancements are due to higher thermal conductivity of nanofluid while increasing particle volume concentration and Brownian motion of nanoparticles. It is studied that there is no negative impact on formation of secondary flow and mixing of fluid when nanofluid passes through the helically coiled tube.