Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Deception detection is a relevant ability in high stakes situations such as police interrogatories or court trials, where the outcome is highly influenced by the interviewed person behavior. With the use of specific devices, e.g. polygraph or magnetic resonance, the subject is aware of being monitored and can change his behavior, thus compromising the interrogation result. For this reason, video analysis-based methods for automatic deception detection are receiving ever increasing interest. In this paper, a deception detection approach based on RGB videos, leveraging both facial features and stacked generalization ensemble, is proposed. First, a face, which is well-known to present several meaningful cues for deception detection, is identified, aligned, and masked to build video signatures. These signatures are constructed starting from five different descriptors, which allow the system to capture both static and dynamic facial characteristics. Then, video signatures are given as input to four base-level algorithms, which are subsequently fused applying the stacked generalization technique, resulting in a more robust meta-level classifier used to predict deception. By exploiting relevant cues via specific features, the proposed system achieves improved performances on a public dataset of famous court trials, with respect to other state-of-the-art methods based on facial features, highlighting the effectiveness of the proposed method.
Online opinions play an important role for customers and companies because of the increasing use they do to make purchase and business decisions. A consequence of that is the growing tendency to post fake reviews in order to change purchase decisions and opinions about products and services. Therefore, it is really important to filter out deceptive comments from the retrieved opinions. In this paper we propose the character n-grams in tokens, an efficient and effective variant of the traditional character n-grams model, which we use to obtain a low dimensionality representation of opinions. A Support Vector Machines classifier was used to evaluate our proposal on available corpora with reviews of hotels, doctors and restaurants. In order to study the performance of our model, we make experiments with intra and cross-domain cases. The aim of the latter experiment is to evaluate our approach in a realistic cross-domain scenario where deceptive opinions are available in a domain but not in another one. After comparing our method with state-of-the-art ones we may conclude that using character n-grams in tokens allows to obtain competitive results with a low dimensionality representation.