Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Applications of machine learning (ML) and data science have extended significantly into contemporary accounting and finance. Yet, the prediction and analysis of taxpayers’ status are relatively untapped to date. Moreover, this paper focuses on the combination of feature transformation as a novel domain of research for corporate firms’ tax status prediction with the applicability of ML approaches. The paper also applies a tax payment dataset of Finish limited liability firms with failed and non-failed tax information. Seven different ML approaches train across four datasets, transformed to non-transformed, that effectively discriminate the non-default tax firms from their default counterparts. The findings advocate tax administration to choose the single best ML approach and feature transformation method for the execution purpose.
The default risk of listed companies not only threatens the interests of enterprises and internal staff but also leads the investors to face significant financial losses. Thus, this study attempts to establish an effective default prediction system for better corporate governance. In present times, it is not uncommon for a senior manager to serve in two or more companies. Our contribution has threefold. First, we construct an indicator system of default prediction for Chinese listed companies by considering the company relationship score. Then, we reversely infer the optimal ratios of the default and nondefault companies’ degrees of influence on their related companies with the maximum area under the curve (AUC). Third, the empirical results show that the default prediction accuracy is improved by using our indicator system that includes the company relationship score.
This paper first reviews empirical evidence and estimation methods of structural credit risk models. Next, an empirical investigation of the performance of default prediction under the down-and-out barrier option framework is provided. In the literature review, a brief overview of the structural credit risk models is provided. Empirical investigations in extant literature papers are described in some detail, and their results are summarized in terms of subject and estimation method adopted in each paper. Current estimation methods and their drawbacks are discussed in detail. In our empirical investigation, we adopt the Maximum Likelihood Estimation method proposed by Duan [Mathematical Finance10 (1994) 461–462]. This method has been shown by Ericsson and Reneby [Journal of Business78 (2005) 707–735] through simulation experiments to be superior to the volatility restriction approach commonly adopted in the literature. Our empirical results surprisingly show that the simple Merton model outperforms the Brockman and Turtle [Journal of Financial Economics67 (2003) 511–529] model in default prediction. The inferior performance of the Brockman and Turtle model may be the result of its unreasonable assumption of the flat barrier.
The default of corporate bonds can result in large financial losses as well as irreparable harm to investors’ trust and the economy as a whole, which implies that the identification of corporate bond default must be done promptly and properly. Current studies mainly rely on accounting and/or macroeconomic data and use the credit rank (CR) to disclose the credit status of corporate bonds in the default prediction task. However, the textual data of credit rating reports (CRRs) contain richer and more comprehensive information and are neglected in related work. In this paper, we propose a novel framework that draws on the unstructured data in CRR to predict the default of corporate bonds. We extract the rating opinion sentences (categorized as positive and negative) from the collected CRR files and use latent Dirichlet allocation (LDA) models to mine topic information. The bilateral topic information of positive and negative opinions can reflect the anti-risk ability and potential risk of corporate bonds, respectively, based on which the constructed topic features are used for default prediction. Results on real-world Chinese corporate bonds dataset show that the bilateral topic information of CRR can significantly improve the predicting power of models (LR, SVM, KNN and MLP) under three performance metrics (AUC, KS and H-measure). By analyzing the ranking of topic features using SHAP value, the proposed framework can explain the factors that affect bond defaults, which can provide a basis for the decision-making of investment behavior.
This chapter first reviews empirical evidence and estimation methods of structural credit risk models. Next, an empirical investigation of the performance of default prediction under the down-and-out barrier option framework is provided. In the literature review, a brief overview of the structural credit risk models is provided. Empirical investigations in extant literature papers are described in some detail, and their results are summarized in terms of subject and estimation method adopted in each paper. Current estimation methods and their drawbacks are discussed in detail. In our empirical investigation, we adopt the Maximum Likelihood Estimation method proposed by Duan (1994). This method has been shown by Ericsson and Reneby (2005) through simulation experiments to be superior to the volatility restriction approach commonly adopted in the literature. Our empirical results surprisingly show that the simple Merton model outperforms the Brockman and Turtle (2003) model in default prediction. The inferior performance of the Brockman and Turtle model may be the result of its unreasonable assumption of the flat barrier.
This paper first reviews empirical evidence and estimation methods of structural credit risk models. Next, an empirical investigation of the performance of default prediction under the down-and–out barrier option framework is provided. In the literature review, a brief overview of the structural credit risk models is provided. Empirical investigations in extant literature papers are described in some detail, and their results are summarized in terms of subject and estimation method adopted in each paper. Current estimation methods and their drawbacks are discussed in detail. In our empirical investigation, we adopt the Maximum Likelihood Estimation method proposed by Duan (1994). This method has been shown by Ericsson and Reneby (2005) through simulation experiments to be superior to the volatility restriction approach commonly adopted in the literature. Our empirical results surprisingly show that the simple Merton model outperforms the Brockman and Turtle (2003) model in default prediction. The inferior performance of the Brockman and Turtle model may be the result of its unreasonable assumption of the flat barrier.