Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In Wireless Sensor Network (WSN), node localization is a crucial need for precise data gathering and effective communication. However, high energy requirements, long inter-node distances and unpredictable limitations create problems for traditional localization techniques. This study proposes an innovative two-stage approach to improve localization accuracy and maximize route selection in WSNs. In the first stage, the Self-Adaptive Binary Waterwheel Plant Optimization (SA-BWP) algorithm is used to evaluate a node’s trustworthiness to achieve accurate localization. In the second stage, the Gazelle-Enhanced Binary Waterwheel Plant Optimization (G-BWP) method is employed to determine the most effective data transfer path between sensor nodes and the sink. To create effective routes, the G-BWP algorithm takes into account variables like energy consumption, shortest distance, delay and trust. The goal of the proposed approach is to optimize WSN performance through precise localization and effective routing. MATLAB is used for both implementation and evaluation of the model, which shows improved performance over current methods in terms of throughput, delivery ratio, network lifetime, energy efficiency, delay reduction and localization accuracy in terms of various number of nodes and rounds. The proposed model achieves highest delivery ratio of 0.97, less delay of 5.39, less energy of 23.3 across various nodes and rounds.
With the popularization of the Internet of Things technology and the improvement of 5G communication technology, the influence of mobile devices on the network structure is increasing. The devices in the network are usually regarded as social users that transmit information. Because the movement of users is dynamic and random, it is more difficult for complex networks to grasp the changing rules of their topological structure. The data transmission model established by considering only the historical behavior of users can no longer meet the demand for fast transmission of large-capacity data. Based on this, this paper proposes a dynamic personalized data transmission model (GRDPS) that considers the recurrent neural network and attention mechanism. First, it uses a recurrent neural network to build users’ personalized preferences and model the user’s historical behavior. Then, GRDPS introduces an attention mechanism to dynamically weight historical user behaviors based on the user’s current message transmission. It is different from the previous methods of modeling user historical behaviors. Based on the requirements of user dynamics, GRDPS effectively considers the temporal characteristics of user historical behaviors and automatically learns the evolution law of user behaviors. Based on the demand of user randomness, GRDPS fully considers the characteristic correlation between the user’s historical behavior and current transmission demand. Finally, GRDPS combines these two points to obtain a personalized ranking of users. The simulation results show that the delivery rate of GRDPS is up to 0.95. Moreover, its data transmission delay and network overhead are better than other methods in the experiment.