Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A CLASSICAL MECHANICAL MODEL OF BROWNIAN MOTION WITH PLURAL PARTICLES

    We give a connection between diffusion processes and classical mechanical systems in this paper. Precisely, we consider a system of plural massive particles interacting with an ideal gas, evolved according to classical mechanical principles, via interaction potentials. We prove the almost sure existence and uniqueness of the solution of the considered dynamics, prove the convergence of the solution under a certain scaling limit, and give the precise expression of the limiting process, a diffusion process.

  • articleNo Access

    KERNEL CONVERGENCE ESTIMATES FOR DIFFUSIONS WITH CONTINUOUS COEFFICIENTS

    Bidirectional valuation models are based on numerical methods to obtain kernels of parabolic equations. Here we address the problem of robustness of kernel calculations vis a vis floating point errors from a theoretical standpoint. We are interested in kernels of one-dimensional diffusion equations with continuous coefficients as evaluated by means of explicit discretization schemes of uniform step h > 0 in the limit as h → 0. We consider both semidiscrete triangulations with continuous time and explicit Euler schemes with time step so small that the Courant condition is satisfied. We find uniform bounds for the convergence rate as a function of the degree of smoothness. We conjecture these bounds are indeed sharp. The bounds also apply to the time derivatives of the kernel and its first two space derivatives. The proof is constructive and is based on a new technique of path conditioning for Markov chains and a renormalization group argument. We make the simplifying assumption of time-independence and use longitudinal Fourier transforms in the time direction. Convergence rates depend on the degree of smoothness and Hölder differentiability of the coefficients. We find that the fastest convergence rate is of order O(h2) and is achieved if the coefficients have a bounded second derivative. Otherwise, explicit schemes still converge for any degree of Hölder differentiability except that the convergence rate is slower. Hölder continuity itself is not strictly necessary and can be relaxed by an hypothesis of uniform continuity.

  • articleNo Access

    Identifying jumps in high-frequency time series by wavelets

    We discuss a volatility functional model and show that jumps asymptotically impact the volatility estimate. This result is useful because our model shows that significant variations affect the estimation of the volatility and historically price series have structures with this type of behavior. We also discuss a method for detecting and locating jumps at different levels and show that the jumps tend to be detected by wavelet coefficients at lower resolution levels accurately. By checking the wavelet coefficients on the different levels, we can find dyadic intervals in some levels, whose corresponding absolute value of the wavelet coefficient exceeds a threshold, and is significantly higher than the others. We applied the procedure in a simulation study and to a series of Google stocks.

  • chapterNo Access

    23: SURVIVAL AND GROWTH WITH A LIABILITY: OPTIMAL PORTFOLIO STRATEGIES IN CONTINUOUS TIME

    We study the optimal behavior of an investor who is forced to withdraw funds continuously at a fixed rate per unit time (e.g., to pay for a liability, to consume, or to pay dividends). The investor is allowed to invest in any or all of a given number of risky stocks, whose prices follow geometric Brownian motion, as well as in a riskless asset which has a constant rate of return. The fact that the withdrawal is continuously enforced, regardless of the wealth level, ensures that there is a region where there is a positive probability of ruin. In the complementary region ruin can be avoided with certainty. Call the former region the danger-zone and the latter region the safe-region. We first consider the problem of maximizing the probability that the safe-region is reached before bankruptcy, which we call the survival problem. While we show, among other results, that an optimal policy does not exist for this problem. we are able to construct explicit -optimal policies, for any > 0. In the safe-region, where ultimate survival is assured, we turn our attention to growth. Among other results, we find the optimal growth policy for the investor, i.e., the policy which reaches another (higher valued) goal as quickly as possible. Other variants of both the survival problem as well as the growth problem are also discussed. Our results for the latter are intimately related to the theory of Constant Proportions Portfolio Insurance.

  • chapterNo Access

    Chapter 35: Beating a moving target: Optimal portfolio strategies for outperforming a stochastic benchmark

    We consider the portfolio problem in continuous-time where the objective of the investor or money manager is to exceed the performance of a given stochastic benchmark, as is often the case in institutional money management. The benchmark is driven by a stochastic process that need not be perfectly correlated with the investment opportunities, and so the market is in a sense incomplete. We first solve a variety of investment problems related to the achievement of goals: for example, we find the portfolio strategy that maximizes the probability that the return of the investor's portfolio beats the return of the benchmark by a given percentage without ever going below it by another predetermined percentage. We also consider objectives related to the minimization of the expected time until the investor beats the benchmark. We show that there are two cases to consider, depending upon the relative favorability of the benchmark to the investment opportunity the investor faces. The problem of maximizing the expected discounted reward of outperforming the benchmark, as well as minimizing the discounted penalty paid upon being outperformed by the benchmark is also discussed. We then solve a more standard expected utility maximization problem which allows new connections to be made between some specific utility functions and the nonstandard goal problems treated here.

  • chapterNo Access

    Chapter 36: Stochastic differential portfolio games

    We study stochastic dynamic investment games in continuous time between two investors (players) who have available two different, but possibly correlated, investment opportunities. There is a single payoff function which depends on both investors' wealth processes. One player chooses a dynamic portfolio strategy in order to maximize this expected payoff, while his opponent is simultaneously choosing a dynamic portfolio strategy so as to minimize the same quantity. This leads to a stochastic differential game with controlled drift and variance. For the most part, we consider games with payoffs that depend on the achievement of relative performance goals and/or shortfalls. We provide conditions under which a game with a general payoff function has an achievable value, and give an explicit representation for the value and resulting equilibrium portfolio strategies in that case. It is shown that non-perfect correlation is required to rule out trivial solutions. We then use this general result explicitly to solve a variety of specific games. For example, we solve a probability maximizing game, where each investor is trying to maximize the probability of beating the other's return by a given predetermined percentage. We also consider objectives related to the minimization or maximization of the expected time until one investor's return beats the other investor's return by a given percentage. Our results allow a new interpretation of the market price of risk in a Black-Scholes world. Games with discounting are also discussed, as are games of fixed duration related to utility maximization.