Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We describe a simple model of fermions in quasi-one dimension that features interaction-induced deconfinement (a phase transition where the effective dimensionality of the system increases as interactions are turned on) and which can be realised using dipolar fermions in an optical lattice1. The model provides a relisation of a "soft quantum matter" phase diagram of strongly-correlated fermions, featuring meta-nematic, smectic and crystalline states, in addition to the normal Fermi liquid. In this paper we review the model and discuss in detail the mechanism behind each of these transitions on the basis of bosonization and detailed analysis of the RPA susceptibility.
We describe a simple model of fermions in quasi-one dimension that features interaction-induced deconfinement (a phase transition where the effective dimensionality of the system increases as interactions are turned on) and which can be realised using dipolar fermions in an optical lattice1. The model provides a relisation of a "soft quantum matter" phase diagram of strongly-correlated fermions, featuring meta-nematic, smectic and crystalline states, in addition to the normal Fermi liquid. In this paper we review the model and discuss in detail the mechanism behind each of these transitions on the basis of bosonization and detailed analysis of the RPA susceptibility.