Centrality measures have been helping to explain the behavior of objects, given their relation, in a wide variety of problems, since sociology to chemistry. This work considers these measures to assess the importance of every classifier belonging to an ensemble of classifiers, aiming to improve a Multiple Classifier System (MCS). Assessing the classifier’s importance by employing centrality measures, inspired two different approaches: one for selecting classifiers and another for fusion. The selection approach, called Centrality Based Selection (CBS), adopts a trade-off between the classifier’s accuracy and their diversity. The sub-optimal selected subset presents good results against selection methods from the literature, being superior in 67.22% of the cases. The second approach, the integration, is named Centrality Based Fusion (CBF). This approach is a weighted combination method, which is superior to literature in 70% of the cases.