Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    PHASE STRUCTURE OF W-DOPED NANO-TiO2 PRODUCED BY SOL-GEL METHOD

    With Ti(OBu)4 as precursor, and HAc as complexing agent, pure and W-doped TiO2 gelatins were prepared by a sol-gel method. During the process of gel formation, metal ions were dispersed in the porous TiO2 matrix. Then, powders of nano-TiO2 and W-doped nano-TiO2 were prepared by drying, grinding and heat treatment at different temperatures. The grain size and structure of the samples, pure TiO2 and W-doped, and treated at different temperatures, were studied by X-ray diffraction (XRD), Beckman Coulter Sorption Analysis and TEM. Results showed that, with increasing temperature, the TiO2 transformed from anatase to rutile and the grain size increased. This transformation and grain growth of TiO2 could be retarded by doping with W.

  • articleNo Access

    One-Pot Hydrothermal Synthesis of Sulfur-Doped SnO2 Nanoparticles and their Enhanced Photocatalytic Properties

    Nano01 Mar 2016

    Sulfur-doped SnO2 nanoparticles with ultrafine sizes have been successfully prepared by a one-pot hydrothermal method. The obtained samples are characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), thermogravimetric (TG), analyzer UV-Vis spectroscopy, photoluminescence (PL) and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the doping level of sulfur element as well as the bandgaps of SnO2 can be controlled to a certain extent by varying the amount of L-cysteine (L-cys). When evaluated as photocatalysts in the degradation of rhodamine B (RhB) and reduction of Cr(VI) under visible light region, the resultant sulfur-doped SnO2 nanoparticles demonstrate obviously enhanced photocatalytic activities due to the markedly improved visible light response and effective separation of the photo-generated electron–hole pairs.

  • articleFree Access

    Fabrication of Biomass-Derived N, S Co-doped Carbon with Hierarchically Porous Architecture for High Performance Supercapacitor

    Nano01 Jul 2020

    Multi-element doped porous carbon materials are considered as one of the most promising electrode materials for supercapacitors due to their large specific surface area, abundant mesoporous structure, heteroatom doping and good conductivity. Herein, we propose a very simple and effective strategy to prepare nitrogen, sulfur co-doped hierarchical porous carbons (N-S-HPC) by one-step pyrolysis strategy. The effect of sole dopants as a precursor was a major factor in the transformation process. The optimized N-S-HPC-2 possesses a typical hierarchically porous framework (micropores, mesopores and macropores) with a large specific surface area (1284.87m2 g1) and N (4.63 atomic %), S (0.53 atomic %) doping. As a result, the N-S-HPC-2 exhibits excellent charge storage capacity with a high gravimetric capacitance of 360F g1 (1 A g1) in three-electrode systems and 178F g1 in two-electrode system and long-term cycling life with 87% retention after 10,000 cycles in KOH electrolyte.