Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Sulfur-doped SnO2 nanoparticles with ultrafine sizes have been successfully prepared by a one-pot hydrothermal method. The obtained samples are characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), thermogravimetric (TG), analyzer UV-Vis spectroscopy, photoluminescence (PL) and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the doping level of sulfur element as well as the bandgaps of SnO2 can be controlled to a certain extent by varying the amount of L-cysteine (L-cys). When evaluated as photocatalysts in the degradation of rhodamine B (RhB) and reduction of Cr(VI) under visible light region, the resultant sulfur-doped SnO2 nanoparticles demonstrate obviously enhanced photocatalytic activities due to the markedly improved visible light response and effective separation of the photo-generated electron–hole pairs.
Multi-element doped porous carbon materials are considered as one of the most promising electrode materials for supercapacitors due to their large specific surface area, abundant mesoporous structure, heteroatom doping and good conductivity. Herein, we propose a very simple and effective strategy to prepare nitrogen, sulfur co-doped hierarchical porous carbons (N-S-HPC) by one-step pyrolysis strategy. The effect of sole dopants as a precursor was a major factor in the transformation process. The optimized N-S-HPC-2 possesses a typical hierarchically porous framework (micropores, mesopores and macropores) with a large specific surface area (1284.87m2 g−1) and N (4.63 atomic %), S (0.53 atomic %) doping. As a result, the N-S-HPC-2 exhibits excellent charge storage capacity with a high gravimetric capacitance of 360F g−1 (1 A g−1) in three-electrode systems and 178F g−1 in two-electrode system and long-term cycling life with 87% retention after 10,000 cycles in KOH electrolyte.