Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Dynamic Responses of Interspersed Railway Tracks to Moving Train Loads

    This paper investigates novel dynamic phenomena of interspersed railway tracks. The interspersed method is commonly carried out by spot-replacing old timber sleepers with new concrete sleepers. Although this interspersed approach provides a short-term solution, such method has a negative effect on the long-term performance of railway tracks. It is evident that the performance of interspersed tracks can quickly deteriorate after some years. As a result, this paper is the first to evaluate dynamic responses of the interspersed track caused by a moving train load in order to understand the root cause of swift track deterioration. Interspersed track models in three-dimensional space have been developed using a finite element package, STRAND7. The model was validated earlier with experimental results. Parametric studies have been conducted to evaluate dynamic responses of the interspersed railway tracks, including dynamic displacement, frontal uplift, rear uplift and accelerations of rail over sleeper, rail at midspan, sleeper at rail seat, and sleeper at midspan. Dynamic amplification phenomena are highlighted as they convey a new insight into dynamic phenomena identifying the real source of track deterioration.

  • articleNo Access

    Dynamic Factor of Suburban Railway Bridge Considering Random Vibration

    The focus of this paper is to examine the dynamic factor of the suburban railway by utilizing the random vibration approach. Breaking through the previous methods of relying on huge amounts of measured data, herein, the dynamic factor essentially results from two major parts: the dynamic effect caused by moving train loads and that generated by track irregularity, which has clear physical significance. As the internal excitation of the vehicle–bridge system, track irregularity has strong randomness. Based on the dimension reduction method, the spatial domain power spectral density (PSD) of the track irregularity is transformed into the time-domain PSD. Therefore, the randomness of the random process is reduced by exploiting the constraint form of a random function, and then, the typical samples of the track irregularity considering randomness are constructed. Using the vehicle–bridge coupled vibration model, the standard deviation of the dynamic factor is evaluated accounting for the random track irregularity and 99.7% guarantee rate. Finally, the impact coefficient of the track irregularity on the bridge is methodically obtained. The sensitivity of the standard deviation of the dynamic factor to vehicle speed and bridge frequency is analyzed. The given solution methodology can fully take into account the randomness of the track irregularity. Thereby, it provides the dynamic factor formulas as a reference for the dynamic performance evaluation of suburban railway bridges and possible revision of current design specifications.