Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    MULTISCALE ENTROPY ANALYSIS OF EEG FROM PATIENTS UNDER DIFFERENT PATHOLOGICAL CONDITIONS

    Fractals01 Dec 2007

    Multiscale sample entropy (MSE) of human electroencephalogram (EEG) data from patients under different pathological conditions of Alzheimer's disease (AD) was evaluated to measure the complexity of the signal. Quantifying the complexity level with respect to various temporal scales, MSE analysis provides a dynamical description of AD development. When compared to EEG data from normal subjects, EEG data from subjects with mild cognitive impairment (MCI) showed nearly the same complexity profile, but a scale discrepancy which may occur from a spectral abnormality. EEG data from severe AD patients showed a loss of complexity over the wide range of time scales, indicating a destruction of nonlinear structures in brain dynamics. We compare the MSE method and spectral analysis to propose that nonlinear dynamical approach combining a multiscale method is crucial for revealing AD mechanisms.