Please login to be able to save your searches and receive alerts for new content matching your search criteria.
An analysis of the Electroencephalogram (EEG) signals while performing a monotonous task and drinking alcohol using principal component analysis (PCA), linear discriminant analysis (LDA) for feature extraction and Neural Networks (NNs) for classification is proposed. The EEG is captured while performing a monotonous task that can adversely affect the brain and possibly cause stress. Moreover, we investigate the effects of alcohol on the brain by capturing the data continuously after consumption of equal amounts of alcohol. We hope that our work will shed more light on the relationship between such actions and EEG, and investigate if there is any relation between the tasks and mental stress. EEG signals offers a rare look at brain activity, while, monotonous activities are well known to cause irritation which may contribute to mental stress. We apply PCA and LDA to characterize the change in each component, extract it and discriminate using a NN. After experiments, it was found that PCA and LDA are effective analysis methods in EEG signal analysis.
Epilepsy is referred to as a neurological disorder, which is detected via examination and manual comprehension of Electroencephalogram (EEG) signals. In deep learning schemes, various enhancements have emerged to efficiently address complex issues by end-to-end learning. The major objective of this research is to propose a new seizure detection approach from EEG signals using a deep learning-based classification technique. The pre-processing is the initial stage, where denoising is performed using a Short-Time Fourier Transform (STFT). Subsequently, the statistical features, time-domain features and spectral features are extracted from the pre-processed signal. Finally, an efficient optimization approach, named Adadelta-Chameleon Swarm Algorithm (Adadelta-CSA), is proposed and employed to train Deep Neural Network (DNN) to carry out the precise seizure prediction. Here, the integration of the Adadelta concept in the Chameleon Swarm Algorithm (CSA) has resulted in Adadelta-CSA. At last, the performance of the Adadelta-CSA scheme-based DNN is compared with the existing techniques by considering accuracy, sensitivity and specificity, and it is found to produce better values of 0.951, 0.966, and 0.935, respectively.