Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We discuss the coupling of fermionic fields with mass dimension one to the O'Raifeartaigh model to study supersymmetry breaking for these fermions. We find that the coupled model has two distinct solutions. The first solution represents a local minimum of the superpotential which spontaneously breaks supersymmetry in perfect analogy to the O'Raifeartaigh model. The second solution is more intriguing as it corresponds to a global minimum of the superpotential. In this case, the coupling to the fermionic sector restores supersymmetry. However, this is achieved at the cost of breaking Lorentz invariance. Finally, the mass matrices for the multiplets of the coupled model are presented. It turns out that it contains two bosonic triplets and one fermionic doublet which are mass multiplets. In addition, it contains a massless fermionic doublet as well as one fermionic triplet which is not a mass multiplet but rather an interaction multiplet that contains component fields of different mass dimension.
The results also imply that the presented model for fermionic fields with mass dimension one is an interesting candidate for supersymmetric dark matter (DM).
A brief review is presented about the ELKO spinor field applied to cosmology, with the main results and limitations of the theory. As a simple application, we have analyzed a model involving the interaction of the ELKO spinor field with dark matter in the universe from a dynamical system approach. When the system is rewritten in terms of the deceleration parameter q and under the assumption that such parameter is nearly constant for some different stages of the evolution, stability points were found for different types of interaction between dark matter and ELKO spinors. Within this new analysis several interesting scenarios are possible, depending on the interaction term. For example, if it is assumed that the equation of the state parameter of the ELKO field is of the phantom type, ωϕ < -1, the current acceleration of the universe can be driven by the decay of dark matter particles into ELKO field. Furthermore, even for ωϕ > 0, the inflationary period can be driven by the decay of the inflaton field (described by the ELKO spinor) into dark matter particles.