Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    EARLY PREDICTION OF MEDICATION REFRACTORINESS IN CHILDREN WITH IDIOPATHIC EPILEPSY BASED ON SCALP EEG ANALYSIS

    Refractory epilepsy often has deleterious effects on an individual's health and quality of life. Early identification of patients whose seizures are refractory to antiepileptic drugs is important in considering the use of alternative treatments. Although idiopathic epilepsy is regarded as having a significantly lower risk factor of developing refractory epilepsy, still a subset of patients with idiopathic epilepsy might be refractory to medical treatment. In this study, we developed an effective method to predict the refractoriness of idiopathic epilepsy. Sixteen EEG segments from 12 well-controlled patients and 14 EEG segments from 11 refractory patients were analyzed at the time of first EEG recordings before antiepileptic drug treatment. Ten crucial EEG feature descriptors were selected for classification. Three of 10 were related to decorrelation time, and four of 10 were related to relative power of delta/gamma. There were significantly higher values in these seven feature descriptors in the well-controlled group as compared to the refractory group. On the contrary, the remaining three feature descriptors related to spectral edge frequency, kurtosis, and energy of wavelet coefficients demonstrated significantly lower values in the well-controlled group as compared to the refractory group. The analyses yielded a weighted precision rate of 94.2%, and a 93.3% recall rate. Therefore, the developed method is a useful tool in identifying the possibility of developing refractory epilepsy in patients with idiopathic epilepsy.

  • articleNo Access

    EARLY DETECTION AND VISUALIZATION OF BREAST TUMOR WITH THERMOGRAM AND NEURAL NETWORK

    Although mammography is still the benchmark technique for breast cancer detection, many advantages of thermography make it a suitable adjunct tool for early detection. This paper describes the development of a computer-aided system for use together with thermography to assist in the detection and visualization/analysis of breast tumors. The system consists of a detection module for predicting the presence of tumors from thermograms, and a visualization module for generating the 3-D volumetric geometry of the suspected tumor inside the breast based on the 2-D thermogram. Detection is achieved through an artificial neural network taking the thermogram image as input, while the visualization is obtained by generating the 3-D model of the breast that produces a matching thermal image as the thermogram under a 3-D finite element analysis. A study with 200 subjects indicate that the detection sensitivity was good but the specificity was poor, but the reverse performance result was true for another back-propagation neural network which used physiological data instead of thermograms as input. This suggests that overall prediction capability can be improved by appropriate combination of the two results.

  • chapterOpen Access

    A Dynamic Model for Early Prediction of Alzheimer’s Disease by Leveraging Graph Convolutional Networks and Tensor Algebra

    Alzheimer’s disease (AD) is a neurocognitive disorder that deteriorates memory and impairs cognitive functions. Mild Cognitive Impairment (MCI) is generally considered as an intermediate phase between normal cognitive aging and more severe conditions such as AD. Although not all individuals with MCI will develop AD, they are at an increased risk of developing AD. Diagnosing AD once strong symptoms are already present is of limited value, as AD leads to irreversible cognitive decline and brain damage. Thus, it is crucial to develop methods for the early prediction of AD in individuals with MCI. Recurrent Neural Networks (RNN)-based methods have been effectively used to predict the progression from MCI to AD by analyzing electronic health records (EHR). However, despite their widespread use, existing RNN-based tools may introduce increased model complexity and often face difficulties in capturing long-term dependencies. In this study, we introduced a novel Dynamic deep learning model for Early Prediction of AD (DyEPAD) to predict MCI subjects’ progression to AD utilizing EHR data. In the first phase of DyEPAD, embeddings for each time step or visit are captured through Graph Convolutional Networks (GCN) and aggregation functions. In the final phase, DyEPAD employs tensor algebraic operations for frequency domain analysis of these embeddings, capturing the full scope of evolutionary patterns across all time steps. Our experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and National Alzheimer’s Coordinating Center (NACC) datasets demonstrate that our proposed model outperforms or is in par with the state-of-the-art and baseline methods.