Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Deep Convolution Generative Adversarial Network-Based Electroencephalogram Data Augmentation for Post-Stroke Rehabilitation with Motor Imagery

    The motor imagery brain–computer interface (MI-BCI) system is currently one of the most advanced rehabilitation technologies, and it can be used to restore the motor function of stroke patients. The deep learning algorithms in the MI-BCI system require lots of training samples, but the electroencephalogram (EEG) data of stroke patients is quite scarce. Therefore, the expansion of EEG data has become an important part of stroke clinical rehabilitation research. In this paper, a deep convolution generative adversarial network (DCGAN) model is proposed to generate artificial EEG data and further expand the scale of the stroke dataset. First, multichannel one-dimensional EEG data is converted into a two-dimensional EEG spectrogram using EEG2Image based on the modified S-transform. Then, DCGAN is used to artificially generate EEG data based on MI. Finally, the validity of the generated artificial EEG data is proved. This paper preliminarily indicates that generating artificial stroke data is a promising strategy, which contributes to the further development of stroke clinical rehabilitation.

  • articleNo Access

    Self-Supervised EEG Representation Learning with Contrastive Predictive Coding for Post-Stroke Patients

    Stroke patients are prone to fatigue during the EEG acquisition procedure, and experiments have high requirements on cognition and physical limitations of subjects. Therefore, how to learn effective feature representation is very important. Deep learning networks have been widely used in motor imagery (MI) based brain-computer interface (BCI). This paper proposes a contrast predictive coding (CPC) framework based on the modified s-transform (MST) to generate MST-CPC feature representations. MST is used to acquire the temporal-frequency feature to improve the decoding performance for MI task recognition. EEG2Image is used to convert multi-channel one-dimensional EEG into two-dimensional EEG topography. High-level feature representations are generated by CPC which consists of an encoder and autoregressive model. Finally, the effectiveness of generated features is verified by the k-means clustering algorithm. It can be found that our model generates features with high efficiency and a good clustering effect. After classification performance evaluation, the average classification accuracy of MI tasks is 89% based on 40 subjects. The proposed method can obtain effective feature representations and improve the performance of MI-BCI systems. By comparing several self-supervised methods on the public dataset, it can be concluded that the MST-CPC model has the highest average accuracy. This is a breakthrough in the combination of self-supervised learning and image processing of EEG signals. It is helpful to provide effective rehabilitation training for stroke patients to promote motor function recovery.