Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    COMPARATIVE STUDY ON THE STIFFNESS OF TRANSVERSE CARPAL LIGAMENT BETWEEN NORMAL SUBJECTS AND CARPAL TUNNEL SYNDROME PATIENTS

    Hand Surgery01 Jan 2013

    The purpose of this study was to compare the stiffness of the transverse carpal ligament (TCL) between healthy volunteers and carpal tunnel syndrome (CTS) patients using sonoelastography. We studied 17 healthy volunteers (four men, 13 women; range 37–84 years) and 18 hands of 13 patients with CTS (three men, ten women; range 41–79 years). Thickness and elasticity of the TCL were evaluated by sonoelastography. Elasticity was estimated by strain ratio of an acoustic coupler, which has a standardized elasticity as a reference medium, to the TCL (AC/T strain ratio). The AC/T strain ratios of the healthy volunteers and the CTS patients were 6.0 and 8.1, respectively (p = 0.030). The AC/T strain ratio showed a positive correlation with the duration of symptoms in the CTS patients (p = 0.035, r = 0.50). We concluded that increased stiffness of the TCL could be one of the causes for CTS.

  • articleNo Access

    Feature

      Ultrasound-Mediated Gene Therapy - Philips and Glygenix Team Up.

      Vietnam Healthcare - The Next Growth Frontier?

      New Ultrasound System Could Lower Number of Biopsies.

    • articleNo Access

      An Efficient Finite Element Algorithm in Elastography

      Elastography is an imaging approach to measure the stiffness of tissues to provide diagnostic information. Currently, finite element method (FEM) has been widely used in elastography. However, FEM tends to an overly stiff model that sometimes gives unsatisfactory accuracy, particularly using triangular elements in 2D or tetrahedral elements in 3D. In general, it is difficult or even impossible to generate quadrilateral or brick elements to precisely capture the anatomic details for mechanobiologic modeling as the biologic system can be rather sophisticated. In addition, biologic soft tissues are often considered as “incompressible” materials, where conventional FEM could suffer from volumetric locking in numerical solution. On the other hand, linear triangular and tetrahedral mesh can be automatically generated for complicated geometry, which significantly saves the time for the creation of model. With these reasons, for the first time, smoothed finite element method (SFEM) is developed to analyze elastography problems. A range of numerical examples, including static, dynamic, viscoelastic and time harmonic cases have exemplified herein to validate that SFEM is able to provide more accurate and stable solutions using the same set of mesh compared with the standard FEM. Furthermore, SFEM is also effective to inversely compute the mechanical properties of abnormal tissue.

    • articleOpen Access

      An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model

      In the characterization of elastic properties of tissue using dynamic optical coherence elastography, shear/surface waves are propagated and tracked in order to estimate speed and Young’s modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the effectiveness of peak tracking approaches, and leading to biased estimates of wave speed. Further, plane wave propagation is sometimes assumed, which contributes to estimation errors. Therefore, we invert a wave propagation model that incorporates propagation, decay, and distortion of pulses in a dispersive media in order to accurately estimate its elastic and viscous components. The model uses a general first-order approximation of dispersion, avoiding the use of any particular rheological model of tissue. Experiments are conducted in elastic and viscoelastic tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation and measuring the wave propagation using a Fourier domain optical coherence tomography system. Results confirmed the effectiveness of the inversion method in estimating viscoelastic parameters in both the viscoelastic and elastic phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of a fresh porcine cornea was conducted. Preliminary results validate this approach when compared to other methods.

    • articleOpen Access

      Photoacoustic elastography based on laser-excited shear wave

      Elastography can be used as a diagnostic method for quantitative characterization of tissue hardness information and thus, differential changes in pathophysiological states of tissues. In this study, we propose a new method for shear wave elastography (SWE) based on laser-excited shear wave, called photoacoustic shear wave elastography (PASWE), which combines photoacoustic (PA) technology with ultrafast ultrasound imaging. By using a focused laser to excite shear waves and ultrafast ultrasonic imaging for detection, high-frequency excitation of shear waves and noncontact elastic imaging can be realized. The laser can stimulate the tissue with the light absorption characteristic to produce the thermal expansion, thus producing the shear wave. The frequency of shear wave induced by laser is higher and the frequency band is wider. By tracking the propagation of shear wave, Young’s modulus of tissue is reconstructed in the whole shear wave propagation region to further evaluate the elastic information of tissue. The feasibility of the method is verified by experiments. Compared with the experimental results of supersonic shear imaging (SSI), it is proved that the method can be used for quantitative elastic imaging of the phantoms. In addition, compared with the SSI method, this method can realize the noncontact excitation of the shear wave, and the frequency of the shear wave excited by the laser is higher than that of the acoustic radiation force (ARF), so the spatial resolution is higher. Compared to the traditional PA elastic imaging method, this method can obtain a larger imaging depth under the premise of ensuring the imaging resolution, and it has potential application value in the clinical diagnosis of diseases requiring noncontact quantitative elasticity.

    • articleNo Access

      Simulation of Acoustic Propagation in 3D Viscoelastic Inhomogeneous Media with Application to Medical Shear Wave Elastography

      This paper proposes a new numerical framework to simulate ultrasound wave propagation in 3D viscoelastic heterogeneous media based on the elastodynamic wave equation including a 3D second-order time-domain perfectly matched layer formulation. A finite difference discretization of this formulation is presented, along with a stability analysis. The resulting model is capable of simulating 3D shear and longitudinal acoustic waves for arbitrary source geometries and excitations, together with arbitrary initial and boundary conditions. A simulation example is provided to show the application of our proposed method for tissue elastography imaging. Specifically, the propagation of shear waves from a localized lesion to the surrounding normal tissue is examined.