Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Using the Voter and Chen version of an embedded-atom model, derived by fitting simultaneously to experimental data both the diatomic molecule and bulk platinum, we have studied the melting behavior of free, icosahedral, 54-, 55- and 56-atom platinum clusters in the molecular dynamics simulation technique. We present an atom-resolved analysis method that includes physical quantities such as the root-mean-square bond-length fluctuation and coordination number for individual atoms as functions of temperature. The effect of a central atom in the icosahedral structure to the melting process is discussed. The results show that the global minimum structures of the 54-, 55- and 56-atom Pt clusters do not melt at a specific temperature, rather, melting processes take place over a finite temperature range. The heat capacity peaks are not δ-functions, but instead remain finite. An ensemble of clusters in the melting region is a mixture of solid-like and liquid-like clusters.
In this paper, we investigated the structural properties of metallic glasses (MGs). We emphasized our study on monatomic Al and binary TiAl3 systems. The calculations are performed by using the molecular dynamics (MD) simulation based on semi-empirical many-body potentials derived from the embedded atom method. The structure is analyzed using the radial distribution function (RDF), the common neighbor analysis (CNA) and the coordination numbers (CNs). Our results demonstrated that it is possible to form MGs in both systems upon fast cooling from the liquid state. This is confirmed by the fact that the system energy and/or volume during the cooling stage decrease continuously with a slight change and by atomic scale analysis using the RDF, CNA and CN analyzing techniques. Furthermore, this specific study shows that under the same conditions, the icosahedral structures appeared in TiAl3 are more abundant than in pure Al. Implications of these findings are discussed.
The surface concentrations and concentration depth profiles to the (110) surface of an Au75Pd25 alloy is studied by modified analytical embedded atom method (MAEAM) with the Monte Carlo simulations. The results indicate that Au enriched in the two topmost layers, but depleted in the third layer. The Au concentration in the non-reconstructed surface is less than that in the reconstructed surface. Au concentration in third layer of reconstructed surface, which is more agreement with experimental data in present simulations, is about 63% 61% and 55%, at 800K, 600K and 400K respectively. Thus the present simulations are helpful for a better understanding of surface segregation of AuPd alloys.