Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The objective of this work is to explore a new parametric class of exact solutions of the Einstein field equations coupled with the Karmarkar condition. Assuming a new metric potential eλ(r) with parameter (n), we find a parametric class of solutions which is physically well-behaved and represents compact stellar model of the neutron star in Vela X-1. A detailed study specifically shows that the model actually corresponds to the neutron star in Vela X-1 in terms of the mass and radius. In this connection, we investigate several physical properties like the variation of pressure, density, pressure–density ratio, adiabatic sound speeds, adiabatic index, energy conditions, stability, anisotropic nature and surface redshift through graphical plots and mathematical calculations. All the features from these studies are in excellent conformity with the already available evidences in theory. Further, we study the variation of physical properties of the neutron star in Vela X-1 with the parameter (n).
In this paper, we explore a family of exact solutions to the Einstein field equations (EFEs) describing a spherically symmetric, static distribution of fluid spheres with pressure anisotropy in the setting of embedding class one spacetime continuum. A detailed theoretical analysis of this class of solutions for compact stars PSR J16142230, Her X-1, LMC X-4 and 4U 1538-52 is carried out. The solutions are verified by examining various physical aspects, viz., anisotropy, gravitational redshift, causality condition, equilibrium (TOV-equation), stable static criterion and energy conditions, in connection to their cogency. Due to the well-behaved nature of the solutions for a large range of positive real n values, we develop models of above stellar objects and discuss their behavior with graphical representations of the class of solutions of the first two objects extensively. The solutions studied by Fuloria [Astrophys. Space Sci.362, 217 (2017)] for n=4 and Tamta and Fuloria [Mod. Phys. Lett. A34, 2050001 (2019), https://doi.org/10.1142/S0217732320500017] for n=8,12 are particular cases of our generalized solution.
In this paper, we provide a new parametric class of solutions to Einstein–Maxwell field equations to study the relativistic structure of a compact star via embedding class I condition. The interior of the star is delineated by Karmarkar condition and at the boundary of the star, we match the class of solutions with Bardeen and Reissner–Nordstrom exterior spacetimes. We assume one of the metric potentials as eλ(r)=1+c1r2cscn(1+c2r2) to obtain other metric potential. Subsequently, we solve Maxwell field equations. We verify and compare all the thermodynamic properties like matter density, anisotropy, radial and tangential pressures, compactification factor, energy conditions, and stability conditions, namely, adiabatic index, balancing forces via modified TOV equations, Harrision–Zeldovich criteria, casualty condition, Herrera cracking condition, etc., of our class of charged solutions. All the physical and stability conditions are with the viable trend throughout the interior of the stellar object. For a suitable range of values of n and parameters, it is depicted from this study that the present class of charged solutions yields effective results to obtain realistic and viable modeling of the neutron star in EXO 1785-248 in both the Bardeen and Reissner–Nordstrom exterior spacetimes.