Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    FLUCTUATIONS AND ULTRAFAST PROCESSES IN VOLTAGE-BIASED TWO-DIMENSIONAL CHANNELS

    Hot-electron fluctuation techniques were developed for experimental investigation of picosecond and subpicosecond electronic and phononic processes in voltage-biased 2DEG channels of interest for microwave low-noise and high-power transistors. Examples illustrate real-space transfer, hot-electron energy relaxation, and occupancy relaxation of hot-phonon modes. The pioneering results on hot-electron energy relaxation and hot-phonon lifetime are confirmed by time-resolved response experiments. The fluctuation technique for measuring the hot-phonon lifetime as a function of the hot-phonon temperature is unique, no datum has been reported for comparison as yet.

  • articleNo Access

    Effect of spin–orbit coupling on the hot-electron energy relaxation in nanowires

    The energy relaxation of hot electrons is proposed based on the spin–orbit (SO) interaction of both Rashba and Dresselhaus types with the effect of hot phonons. A continuum theory of optical phonons in nanowires taking into account the influence of confinement is used to study the hot-electron energy relaxation. The energy relaxation due to both confined (CO) and interface (IO) optical phonon emission on nanowire radius, electrical field strength, parameters of SO couplings and electron temperature is calculated. For considered values of the nanowire radius as well as other system parameters, scattering by IO phonons prevails over scattering by CO phonons. The presence of an electric field leads to the decrease of power loss in transitions between states with the same spin quantum numbers. With the increase of the electric field strength, the influence of the Dresselhaus SO interaction on the energy relaxation rate decreases. The effect of SO interaction does not change the previously obtained increasing dependence of power loss on electron temperature. The sensitivity of energy relaxation to the electric field also through the Rashba parameter allows controlling the rate of energy by electric field.

  • chapterNo Access

    FLUCTUATIONS AND ULTRAFAST PROCESSES IN VOLTAGE-BIASED TWO-DIMENSIONAL CHANNELS

    Hot-electron fluctuation techniques were developed for experimental investigation of picosecond and subpicosecond electronic and phononic processes in voltage-biased 2DEG channels of interest for microwave low-noise and high-power transistors. Examples illustrate real-space transfer, hot-electron energy relaxation, and occupancy relaxation of hot-phonon modes. The pioneering results on hot-electron energy relaxation and hot-phonon lifetime are confirmed by time-resolved response experiments. The fluctuation technique for measuring the hot-phonon lifetime as a function of the hot-phonon temperature is unique, no datum has been reported for comparison as yet.