Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    ERGODICITY AND CHAOS IN A SYSTEM OF HARMONIC OSCILLATORS

    In recent years the term ergodicity has come into scientific vogue in various physical problems. In particular when a system exibits chaotic behavior, it is often said to be ergodic. Is it a correct usage of the term ergodicity? Does it not mean that the time and ensemble averages of a variable are equal? Are they really related one to one? We examine this issue via simple models of harmonic oscilators by means of the theorems of Birkhoff and Khinchin and also by our own physical theory of ergometry. This study also considers the chaotic behavior in the logistic map.

  • chapterNo Access

    ERGODICITY AND CHAOS IN A SYSTEM OF HARMONIC OSCILLATORS

    In recent years the term ergodicity has come into scientific vogue in various physical problems. In particular when a system exibits chaotic behavior, it is often said to be ergodic. Is it a correct usage of the term ergodicity? Does it not mean that the time and ensemble averages of a variable are equal? Are they really related one to one? We examine this issue via simple models of harmonic oscilators by means of the theorems of Birkhoff and Khinchin and also by our own physical theory of ergometry. This study also considers the chaotic behavior in the logistic map.