Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This paper is concerned with the existence and controllability of solutions for infinite delay functional differential systems with multi-valued impulses in Banach space. Sufficient conditions for the existence are obtained by using a fixed point theorem for multi-valued maps due to Dhage. An example is also given to illustrate our results.
This paper is devoted to system of semilinear heat equations with exponential-growth nonlinearity in two-dimensional space which is the analogue of the scalar model problem studied in [S. Ibrahim, R. Jrad, M. Majdoub and T. Saanouni, Local well posedness of a 2D semilinear heat equation, Bull. Belg. Math. Soc.21 (2014) 1–17]. First, we prove the local existence and unconditional uniqueness of solutions in the Sobolev space (H1 × H1)(ℝ2). The uniqueness part is nontrivial although it follows Brezis–Cazenave's proof [H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math.68 (1996) 73–90] in the case of monomial nonlinearity in dimension d ≥ 3. Next, we show that in the defocusing case our solution is bounded, and therefore exists globally in time. Finally, for this system, we treat the question of blow-up in finite time under the negativity condition on the energy functional. The technique to be used is adapted from [Bull. Belg. Math. Soc. 21 (2014) 1–17].
In this paper, we consider two types of set-valued Volterra–Hammerstein integral equations and prove the existence and uniqueness theorem.
In this paper, we study the existence of mild solutions of impulsive evolution fractional functional differential equation of order 0<α<1 involving a Lipschitz condition on term Ik. We shall rely on a fixed point theorem for the sum of completely continuous and contraction operators due to Burton and Kirk.