Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, we propose an effective framework to automatically segment hard exudates (HEs) in fundus images. Our framework is based on a coarse-to-fine strategy, as we first get a coarse result allowed of some negative samples, then eliminate the negative samples step by step. In our framework, we make the most of the multi-channel information by employing a boosted soft segmentation algorithm. Additionally, we develop a multi-scale background subtraction method to obtain the coarse segmentation result. After subtracting the optical disc (OD) region from the coarse result, the HEs are extracted by a SVM classifier. The main contributions of this paper are: (1) propose an efficient and robust framework for automatic HEs segmentation; (2) present a boosted soft segmentation algorithm to combine multi-channel information; (3) employ a double ring filter to segment and adjust the OD region. We perform our experiments on the pubic DIARETDB1 dateset, which consists of 89 fundus images. The performance of our algorithm is assessed on both lesion-based criterion and image-based criterion. Our experimental results show that the proposed algorithm is very effective and robust.
One of the greatest concerns to the personnel in the current health care sector is the severe progression of diabetes. People can often have diabetes and be completely unaware as the symptoms seem harmless when they are seen on their own. Diabetic retinopathy (DR) is an eye disease that is associated with long-standing diabetes. Retinopathy can occur with all types of diabetes and can lead to blindness if left untreated. The conventional method followed by ophthalmologists is the regular testing of the retina. As this method takes time and energy of the ophthalmologists, a new feature-based automated technique for classification and detection of exudates in color fundus image is proposed in this paper. This method reduces the work of the professionals while examining every fundus image rather than only on abnormal image. The exudates are detected from the color fundus image by applying a few pre-processing techniques that remove the optic disk and similar blood vessels using morphological operations. The pre-processed image was then applied for feature extraction and these features were utilized for classification purpose. In this paper, a novel classification technique such as self-adaptive resource allocation network (SRAN) and meta-cognitive neural network (McNN) classifier is employed for classification of images as exudates, their severity and nonexudates. SRAN classifier makes use of self-adaptive thresholds to choose the appropriate training samples and removes the redundant samples to prevent over-training. These selected samples are availed to improve the classification performance. McNN classifier employs human-like meta-cognition to regulate the sequential learning process. The meta-cognitive component controls the learning process in the cognitive component by deciding what-to-learn, when-to-learn and how-to-learn. It is therefore evident that the implementation of human meta-cognitive learning principle improves efficient learning.
Diabetic retinopathy (DR) is a complication of diabetes caused by changes in the blood vessels of the retina. Initially, the DR causes trivial changes in the retinal capillary. The symptoms can blur or distort patients' vision, which are the main causes of blindness. The DR is characterized by the presence of exudates at the nonproliferative stage. Once damaged by DR, the effects will be permanent and hence an earlier treatment is considered as vital. The presence of exudates is detected by ophthalmologists from the dilated retinal images, which are captured by dropping chemical solution into the patient's eye that leads to irritation. Therefore, there is a need for an alternative method toward the detection of exudates using image processing algorithms from the nondilated images. In this paper, an automated method is proposed for the detection of exudates using the fuzzy C-Means (FCM) clustering technique and reconstruction through a superimposition process in the absence of dilating patient's eye. The segmented result of FCM is compared with the result obtained using the Fuzzy K-Means segmentation algorithm. The sensitivity and specificity values for the exudates detection using the FCM algorithm are 87.38% and 96.94%, respectively. On the other hand, sensitivity and specificity values for the exudates detection using the K-Means algorithm are 75.04% and 93.73%, respectively.
Diabetes affects retinal structure of a diabetic patient by generating various lesions. Early detection of these lesions can avoid the loss of vision. Automation of detection process can be made easily feasible to masses by the use of fundus imaging. Detection of exudates is significant in diabetic retinopathy (DR) as they are earlier signs and can cause blindness. Finding the exact location as well as correct number of exudates play vital role in the overall treatment of a patient. This paper presents an algorithm for automatic detection of exudates for DR. The algorithm combines the advantages of supervised and unsupervised techniques. It uses fuzzy-C means (FCM) segmentation on coarse level and mahalanobis metric for finer classification of segmented pixels. Mahalanobis criterion gives significance to most relevant features and thus proves a better classifier. The results are validated using DIARETDB0 and DIARETDB1 databases and the ground truth provided with it. This evaluation provided 95.77% detection accuracy.
Diabetic maculopathy is one of the complications of diabetes mellitus that is considered as one of the major cause of vision loss among people around the world. Compulsory screening of eye will help to identify the maculopathy at early stage and reduce the risk of severe vision loss. A new automated method for the detection and grading of diabetic maculopathy severity level without any manual intervention is presented. Based on the location of exudates in marked macular region the severity level is classified into mild, moderate and severe. Digital color retinal images at different levels of maculopathy were used to evaluate the method. An overall sensitivity of 95.6% and specificity of 96.15% were achieved by the method.