Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This paper proposes the design of auxiliary-coordinated controller for static VAR compensator (SVC) and thyristor-controlled series capacitor (TCSC) devices by adaptive fuzzy optimized technique for oscillation damping in multimachine power systems. The performance of the coordinated control of SVC and TCSC devices based on feedforward adaptive neuro fuzzy inference system (F-ANFIS) is compared with that of the adaptive neuro fuzzy inference system (ANFIS) structure based on recurrent adaptive neuro fuzzy inference system (R-ANFIS) network architecture. The objective of the coordinated controller design is to tune the parameters of SVC and TCSC fuzzy lead lag compensator simultaneously to minimize the deviation of rotor angle and rotor speed of the generators. The performance of the system is enhanced by optimally tuning the membership functions of fuzzy lead lag controller parameter of the flexible AC transmission system (FACTS) by R-ANFIS controller. The training data for F-ANFIS and R-ANFIS are generated by conventional linear control technique under various operating conditions. The offline trained controller tunes the parameter of lead lag controller in online. The oscillation damping ability of the system is analyzed for three-machine test system by calculating the standard deviation and cost function. The superior performance of R-ANFIS controller is compared with various particle swarm optimization-based feedforward ANFIS controllers available in literature.
Power quality (PQ) issue is referred to as any problem that exposes in the voltage and current or in frequency value that causes a malfunction of protection devices or maloperation of the system. The improvement of the PQ is important at the load side when the production processes get more complicated and require a bigger liability level. An Elephant Herding Optimization (EHO) algorithm is presented for improving the PQ and reducing the harmonic distortion using the Static Switched Filter Compensation (SSFC) in Photovoltaic (PV) interconnected wind energy conversion system (WECS). The novelty of the proposed system is enhancing the performance of the grid-connected hybrid energy system such as stabilizing the voltage, reducing the power loss and mitigating the harmonic distortion using the SSFC. Here, the proposed controller is used to optimize the control pulses for SSFC. The SSFC and voltage-source converters with smart dynamic controllers are emerging as stabilization and power filtering equipment to improve the PQ. The proposed method has implemented in MATLAB/Simulink platform and their performances are evaluated and contrasted with the existing technologies such as Bat algorithm (BA) and Firefly algorithm (FA) techniques.
In this paper, beginning with a concise overview of the Available Transfer Capability (ATC) evaluation methods, we make a proposition for reliability management in the planning horizon of deregulated power systems through the concept of Adequacy Resiliency. The derived indices are meant as indicators of adaptability of power systems to ensure the required reliability levels. Improvements to this conceptualization upon the deployment of Flexible AC Transmission System (FACTS) devices are then put forward. We also explore the option of employing the created indices to the operational horizon of power systems, explaining the means of market enhancement. Core reliability issues arising out of the usage of FACTS are then discussed.
The world is increasingly dependent on critical infrastructures such as the electric power grid, water, gas and oil transport systems. Due to this increasing dependence and inadequate infrastructure expansion, these systems are becoming increasingly stressed. These additional stresses leave these systems less resilient to external faults, both accidental and malicious than ever before. As a result of this increased vulnerability, many critical infrastructures are becoming susceptible to cascading failures, where an initial fault caused by an external force may induce a domino-effect of further component failures. An important implication is that traditional infrastructure risk analysis methods, often relying on Monte Carlo sampling of fault scenarios, are no longer sufficient. Instead, systematic analysis based on worst-case attacks by intelligent adversaries is essential. This paper describes a coevolutionary methodology to simultaneously discover low-effort high-impact faults and corresponding means of hardening infrastructures against them. We empirically validate our methodology through an electric power transmission system case study.
Flexible Alternative Current Transmission Systems (FACTS) based on Voltage Source Converter (VSC) is used for voltage regulation in transmission and distribution systems. FACTS can rapidly supply dynamic VARs required during system faults for voltage support. The apparent impedance is influenced by the reactive power injected or absorbed by FACTS, which will result in the under reaching or over reaching of distance relay. This paper presents simulation results of the application of distance relays for the protection of transmission systems employing FACTS controllers. The complete digital simulation of FACTS within a transmission system is performed in the MATLAB/ Simulink environment using the Power System Block set (PSB). An efficient method based on wavelet transforms, fault detection, classification and location is proposed using ANN technique which is almost independent of fault impedance, fault distance and fault inception angle of transmission line fault currents with FACTS controllers.